Table 3M-14. Summary Comparison of In-Basin Energy Generation Impacts^a

Change Alternatives (%)	CX Emissions Average Annual Aqueduct 2011 Energy (1,000s (MWh) of Tons)	Average Annual Fuel Cost for Entire LADWP System (1992) Change (\$1,000s) (%)	Change in Total System Fuel Costs Compared to Point-of-Reference		NO _x Emissions				SO _x Emissions				CO Emissions			
			Conditions (I Avei Ann (1,000s (\$1,000s) of Tons)	1992 dollars) rage	2011 (Tons)	Change	Average Annual (Tons)	Change	2011 (Tons)	Change	Average Annual (Tons)	Change	2011 (Tons)	Change	Average Annual (Tons)	
Point-of-reference	1,038,000	675,580			888		813		36.0		22.5		1,247		761	-
No-Restriction Alternative Near-term Drought Long-term	e 1,072,000 988,000 NC	674,350	(1,230)	(0.18)	886	(0.23)	812	(0.12)	36.0	0.00	22.4	(0.44)	1,243	(0.32)	759	(0.26)
6,372-Ft Alternative Near-term Drought Long-term	1,005,000 898,000 NC	677,480	1,900	0.28	895	0.79	815	0.36	36.0	0.00	22.7	0.89	1,255	0.64	764	0.39
6,377-Ft Alternative Near-term Drought Long-term	984,000 819,000 NC	678,250	2,670	0.39	899	1.24	817	0.54	36.0	0.00	22.7	0.89	1,256	0.72	766	0.66
6,383.5-Ft Alternative Near-term Drought Long-term	930,000 772,000 930,000	679,750	4,170	0.61	899	1.24	820	0.92	36.0	0.00	22.8	1.33	1,256	0.72	768	0.92
6,390-Ft Alternative Near-term Drought Long-term	904,000 763,000 938,000	680,610	5,030	0.74	900	1.35	821	0.98	36.00	0.00	22.8	1.33	1,257	0.80	770	1.18
6,410-Ft Alternative Near-term Drought Long-term	8454,000 735,000 901,000	682,230	6,650	0.97	901	1.46	824	1.39	36.0	0.00	22.9	1.78	1,263	1.28	773	1.58
No-Diversion Alternative Near-term Drought Long-term	817,000 716,000 NC	683,760	8,180	1.20	902	1.58	827	1.81	36.0	0.00	23.2	3.11	1,263	1.28	776	1.97

NC = no change.

a The significance of in-basin energy generation impacts are evaluated in terms of changes in total system fuel costs and pollutant emissions from in-basin power plants.