Copyright 1985

by Peter Vorster

A Water Balance Forecast

Model for Mono Lake, California

Ву

Peter Vorster

Approved:

Date:

TABLE OF CONTENTS

Foreword	xiii
Abbreviations	xvii
Conversion Factors	xxi
Introduction	1
Chapter I: Background	
Environmental Setting	4
Mono Basin Location Topography Geology Climate Hydrology Soils Vegetation	4
Mono Lake	17
Water Balance Theory	23
Model Development Formulation Calibration Verification Application	26
Previous Mono Lake Water Balance Models	38
Chapter II: The Mono Lake Water Balance Model	
Formulation Free Body Time Interval Base Period	48 48 49 49
Precipitation Mono Lake Precipitation Net Land Surface Precipitation	54
Runoff Sierra Nevada Gaged Runoff Ungaged Sierra Runoff Non-Sierra Runoff	65

Evaporation Mono Lake Evaporation Net Grant Lake Reservoir Evaporation Bare Ground Evaporation	85
Evapotranspiration Riparian Evapotranspiration i. Acreage ii. Rate Irrigated Land Evapotranspiration i. Acreage ii. Rate Phreatophyte Evapotranspiration Above 6428 ft i. Acreage ii. Rate Phreatophyte Evapotranspiration Below 6428 ft i. Acreage ii. Rate	104
Diversions Virginia Creek Inflow Net Municipal Inflow i. June Lake Loop ii. Lee Vining iii. Mono City iv. Other Residents Surface Water Export Groundwater Export	124
Storage Changes Soil Water Storage Change Grant Lake Reservoir Storage Change Groundwater Storage Change Mono Lake Storage Change	137
Error Analysis	157
The Formulated Model	168
Calibration Procedure	169 177
Verification	177
Chapter III: Application of the Water Balance Model Application 1: Historic (1937-83) Lake Levels Assuming the LADWP Aqueduct Facilities Were Never Built Purpose Assumptions Results Comparison to Previous Results	192

Application 2: Futur With 1	re Lake Levels and Salinity 1937-83 Hydroclimatic Conditions Purpose Assumptions	198
Application 2A:	Future Levels Using the Sequence of Hydroclimatic Conditions in the Order They Actually Occurred Purpose Assumptions Results Comparison to Previous Results	205
Application 2B:	Future Levels Using the Sequence of 1937-83 Hydraclimatic Conditions With the 1947-64 Conditions Occurring First Purpose Assumptions Results	210
Application 2C:	Future Level Using the 1937-83 Average Hydroclimatic Conditions in Each Year of the Forecast Purpose Assumptions Results Comparison to Previous Results	211
Application 2D:	Future Salinities Using the Sequence of 1937-83 Hydroclimatic Conditions Purpose Assumptions Results Comparison to Previous Results	224
Application 3: Sens or (Citivity of Future Levels to Errors Changes in Component Variables Purpose Assumptions Results	230

Chapter IV: Conclusions

Summary of Model Development and Results	238
Usefulness of the Model	243
Suggested Future Research	244

<pre>Appendix I: Reference Information A. Climatic Measurement Sites B. Stage/Area/Volume Relationship C. Stage/Salinity Relationship D. Statistical Distribution of Runoff Index E. Computer Usage</pre>	249 251 262 267 267 270
Appendix II: Supporting Material Used to Derive Components	271
A. Derivation of isonyetal Map B. Methodology for Thernthweite Soil Meigture Belance	271
C Bare Ground Evaporation Pates	283
D Methodology to Determine Acreage of	200
Phreatophytes Below 6428 ft	286
Appendix III: Climatic Data From Simis Station A. Evaporation Measurements B. Other Climatic Data from Simis Station	304 308
Appendix IV: Historical Geography of the Mono Basin	312
A. Human Development of the Mono Basin	315
B. Irrigation History	320
Appendix V: Terminal Lakes A. General Description B. Water Balances at Other Terminal Lakes	320 326
References Cited	332

LIST OF FIGURES

Figure	1-1	Location Maps	5
Figure	1-2	Elevations	8
Figure	1-3	Geology	9
Figure	1-4	Mono Groundwater Basin	11
Figure	1-5	Monthly Temperature Characteristics	
		of the Simis Climate Station	13
Figure	1-6	Surface Fluctuations of Mono Lake, 1850-Present	21
Figure	1-7	Schematic Diagram for Development	
		of Lake Level Forecast Model	27
Figure	2-1	Comparison of Monthly Percentage	
_		of Mean Annual Precipitation (M.A.P.)	54a
Figure	2-2	Relationship of Precipitation to Elevation	
_		and Distance From the Sierra Nevada Crest	56
Figure	2-3	Average Annual Precipitation	57
Figure	2-4	Comparison of Average Monthly Actual and	
-		Unimpaired Runoff	68
Figure	2-5	Gaging Station and Runoff Areas	69
Figure	2-6	Approximate Relationships of Precipitation	
5		to Elevation and Runoff for Gaged Watersheds	81
Figure	2-7	Phreatophyte Distribution	105
Figure	2-8	Graph and Table for Determining	
5	-	Blaney-Criddle "K" Coefficient	110
Figure	2-9	Diversions	125
Figure	2-10	Conceptual Diagram of Groundwater	
J		Storage Change	142
Figure	2-11	Schematic Diagram of Component Derivation.	146
		a) Precipitation	
		b) Runoff	
		c) Evaporation	
		d) Evapotranspiration	
		e) Diversions	
		f) Storage Changes	
Figure	2-12	Mono Basin Water Balance	164
Figure	2-13	Annual Inflow, 1937-83 ·····	165
Figure	2-14	Annual Outflow, 1937-83	166
Figure	2-15	Annual Storage Changes, Excluding	
		Mono Lake, 1937-83	167
Figure	2-16	Comparison of Observed and Calculated	
		Lake Levels (Model Verification)	180
Figure	2-17	Comparison of Observed Lake Levels	
rigure	/	and Those Calculated by Model	
		Calibrated with 1937-83 Data	186
Figure	3-1	Flow Diagram of Forecast Procedure	193
Figure	3-2	1937-83 Observed and Reconstructed Lake	
	0 -	Levels Without LADWP Export	197
Figure	3-3	Lake Level Fluctuations' 1985-2031 for	
1 I Jul C	5 5	Exports of 0. 30, 50 and 100 Thousand	
		ac-ft/yr With Actual Sequence of	
		1937-83 Hydroclimatic Conditions	207
Figure	3-4	Lake Level Fluctuations 1985-2454 for	
		Exports of 0. 30, 50 and 100 Thousand	
		ac-ft/vr With Repetition of 1937-83	
		Hydroclimatic Conditions	208

Figure 3-5	Comparison of Lake Level Fluctuations, 1985-2031, Using 1937-83 Hydroclimatic Conditions With Initial Sequence Above Normal (1937-46) and Initial Sequence Below Normal (1947-64) a) 0 ac-ft/yr Export b) 30,000 ac-ft/yr Export c) 50 000 ac-ft/yr Export	212
	d) 100,000 ac-ft/yr Export	
Figure 3-6	Lake Level Fluctuations, 1985-2454, for Exports of 0, 30, 50 and 1100 Thousand ac-ft/yr Using the Average 1937-83 Hydroclimatic	<u>,</u>
	Conditions	217
Figure 3-7	Equilibrium Lake Level as a Function of LADWP Surface Water Exports	218
Figure 3-8	Average Annual Inflows to Mono Groundwater Basin Required to Maintain	220
Figure 3-9	Comparison of Equilibrium Lake Level as	220
Figure 3-10	Different Forecast Models	222
Figure 3-11	for LADWP (1984a,d) Models and our Model Projected Salinity Fluctuations Using	223
119410 0 11	1937-83 Hydroclimatic Conditions With Initial Wet Sequence (1937-46) and Initial Dry Sequence (1947-64)	226
	c) 50,000 ac-ft/yr Export d) 100,000 ac-ft/yr Export Dweiegted Long Term Calinity Elugtuations	
Figure 3-12	Projected Long-Term Salinity Fluctuations, 1985-2454, With Repetition of 1937-83 Hydroclimatic Conditions, For Exports of	
Figure 3-13	0, 30, 50 and 100 Thousand ac-ft/yr Sensitivity of Forecasted Lake Levels	231
	to Changes in Component Values a) evaporation index b) runoff index c) arbitrary 1000 ac-ft error	233
Figure 3-14	Sensitivity of Equilibrium Level to Changes in Component Values as a Function	22E
Figure 4-1	of Export Inflows and Outflows to the Mono	235
Figure 4-2	Comparison of Current and Projected Lake	242
	Levers, Areas, and volumes	250
Figure A l-l Figure A l-2A Figure A l-2B Figure A l-3	Climatic Measurement Sites Stage/Area Curve Stage/Volume Curve Stage/Salinity Curve	250 259 260 266

Figure A l-4	Distribution of the Natural Runoff Index a) Arithmetic-Normal Plot b) Log-Normal Plot	268
Figure A 2-l	Approximate Relationships of Precipitation to Elevation East of the Sierra Nevada Crest	276
Figure A 2-2	Phreatophyte Sites and Vegetation Transects on Exposed Lake Bottom	290
Figure A 2-3	<pre>Vegetation Transects on Exposed Lake Bottom a) Gull Bath Beach b) West Shore c) Lee Vining Creek Tufa d) Navy Beach</pre>	291

LIST OF TABLES

Table	1-1	Principal Topographic Provinces of the Mono Basin	7
Table	1-2	Comparison of Previous Mono Lake Water	1
		Balance Models	39
Table	2-1	Mono Basin Gaging Stations	51
Table	2-2	Comparison of Average Annual Mono Lake	60
Table	2-3	Recervoirs in the Mono Basin	67
Table	2-4	Reservoirs in the Mono Basin Pupoff Characteristics of the Caged	07
Table	2 1	Watersheds	71
Table	2-5	Comparison of Average Annual Runoff from	70
Table	2-6	Quartiles and Extreme Values of the	12
TUDIC	2 0	1027-82 Annual Punoff Values	75
Tabla	2-7	Comparison of Estimatos of Average Appual	15
Tabic	2 /	Comparison of Escimates of Average Annual	
		Non-Sierra Watersheda	77
Tabla	2-8	Retimated Punoff from Ungaged Sierra Nevada	, ,
Table	2-0	Materahoda Haina Dreain (Pupoff Method	83
Table	2_9	Comparison of Estimated Mono Lake	05
Table	2-9	Evaporation Dates	89
Table	2_10	Dotential Evapotrangnization in the Mono	00
Table	2-10	Croundwater Bagin	107
Table	2-11	Current Municipal Has	132
Table	2 - 12	Accumptions Used to Derive Component	192
Table		Values	153
Table	2-13	Range of Random Error in Estimating	
		Water Balance Components	155
Table	2-14	Magnitude of Component Error	156
Table	2-15	Water Balance Model of the Mono	
		Groundwater Basin	159
Table	2-16	Comparison of 1957-83 and 1937-83	
		Hydroclimatic Statistics	171
Table	2-17	Factors That May Explain Systematic	
		Component Error	172
Table	2-18	Multiple Regression Statistics for	
		1957-83 g-Factor Equation	173
Table	2-19	Multiple Regression Statistics for	
		1957-83 2-Factor Equation	173
Table	2-20	Comparison of Observed and Sequentially	
		Calculated Lake Levels: 1937-56	178
Table	2-21	Comparison of Observed and Year-to-Year	
		Calculated Lake Levels: 1937-56	179
Table	2-22	Comparison of Observed and Sequentially	
		Calculated Lake Levels Using the	
		Uncalibrated Model: 1937-56	182
Table	2-23	Comparison of Observed and Sequentially	
		Calculated Lake Levels Using g-Factor	1
		Equation	T83
Table	2-24	Multiple Regression Statistics for 1937-83	1
		2-Factor Equation	1/3

Table	2-25	Results of Calibration and Verification	100
Table	3-1	Comparison of 1937-83 Observed and	186a
		Calculated Lake Levels Assuming No Aqueduct	
		Facilities Were Built	196
Table	3-2	Comparison of Different Models' Calculated	
		Lake Levels Assuming No Export by LADWP	199
Table	4-⊥	Recommendations to Improve Accuracy of	
		Component Estimates	246
Table	Al-l	Planimetered Lake Basin Areas	252
Table	Al-2	Stage/Area/Volume Relationship	254
Table	Al-3	Comparison of Stage/Area/Volume	
		Relationship Derived by this Study	
		and LADWP	261
Table	Al-4	Stage/Salinity Relationship	263
Table	A2-1	Precipitation Stations Used in	
m - l- l -		Isohyetal Map	272
Table	AZ-2	Average April I Water Content and Annual	
		Precipitation at Snow courses and Aerian	274
Table	∆2-3	Sample Soil Mater Balance Calculation	2/1
TUDIC	nz 5	Non-Sierra Bedrock Area 12 5" to 15"	
		Precipitation Zone	279
Table	A2-4	Estimate of Yield from Mono Groundwater	
		Basin and Non-Sierra Watersheds by Modified	
		Thornthwaite Methodology	282
Table	A2-5	Phreatophyte Sites and Acreages on the	
		Exposed Lake Bottom	296
Table	A3-1	Evaporation Measurements from Simis Station	304
		a) 1980	
		D) 1981	
		C) 1902 d) 1002	
Table	∆ 3-2	Climatic Measurements at Simis Station	308
TUDIC	nj z	a) 1980	
		b) 1981	
		c) 1982	
		d) 1983	
Table	A5-1	Analysis of Terminal Lake Water	
		Balance Models	327