
Figure 2-17.
Simulated Lake Surface Elevation with Preliminary Minimum Monthly Streamflows from DFG Stream Evaluation Reports



Note: Simulation is based on 1940-1989 historical hydrology, beginning at the point-of-reference lake surface elevation.

Table 2-6.
Preliminary Minimum Monthly Streamflows (cfs) for Lee Vining, Walker, Parker, and Rush Creeks from DFG Stream Evaluation Reports

| Month     | Lee Vining<br>Creek<br>All<br>Years | Walker<br>Creek<br>All<br>Years | Parker<br>Creek<br>All<br>Years | Rush Creek - 100 cfs |                |             | Rush Creek - 60 cfs |                |                     |
|-----------|-------------------------------------|---------------------------------|---------------------------------|----------------------|----------------|-------------|---------------------|----------------|---------------------|
|           |                                     |                                 |                                 | Dry<br>Year          | Normal<br>Year | Wet<br>Year | Dry<br>Year         | Normal<br>Year | <b>W</b> et<br>Year |
| April     | 45                                  | 6                               | 9                               | 35                   | 59             | 84          | 35                  | 59             | 60                  |
| May       | <b>4</b> 5                          | 6                               | 9                               | 75                   | 100            | 100         | 60                  | 60             | 60                  |
| June      | 61 <sup>a</sup>                     | 7 <sup>b</sup>                  | 10.5 <sup>c</sup>               | 72                   | 100            | 100         | 60                  | 60             | 60                  |
| July      | 45                                  | 6                               | 9                               | 45                   | 100            | 100         | 45                  | 60             | 60                  |
| August    | <b>4</b> 5                          | 6                               | 9                               | 42                   | 93             | 100         | 42                  | 60             | 60                  |
| September | <b>4</b> 5                          | 6                               | 9                               | 40                   | 63             | 100         | 40                  | 60             | 60                  |
| October   | 40                                  | 4.5                             | 6                               | 36                   | 58             | 93          | 36                  | 58             | 60                  |
| November  | 40                                  | 4.5                             | 6                               | 30                   | 40             | 71          | 30                  | 40             | 56                  |
| December  | 40                                  | 4.5                             | 6                               | 30                   | 40             | 71          | 30                  | 40             | 56                  |
| January   | 40                                  | 4.5                             | 6                               | 31                   | 44             | 57          | 31                  | 44             | 57                  |
| February  | 40                                  | 4.5                             | 6                               | 32                   | 48             | 54          | 32                  | 48             | 54                  |
| March     | 40                                  | 4.5                             | 6                               | 34                   | 52             | 54          | 34                  | 52             | 54                  |

## Notes:

Sources: Beak Consultants (1991), Ebasco Environmental and Water Engineering and Technology (1991b and 1991c), Aquatic Systems Research (1992), and Gibbons pers. comm.

<sup>&</sup>lt;sup>a</sup> Dry and normal year flushing flow of 160 cfs for 3 days, wet year June flushing flow of 160 cfs for 30 days.

<sup>&</sup>lt;sup>D</sup> Dry and normal year flushing flow of 15 cfs for 3 days, wet year June flushing flow of 15 cfs for 30 days.

<sup>&</sup>lt;sup>C</sup> Dry and normal year flushing flow of 23 cfs for 3 days, wet year June flushing flow of 23 cfs for 30 days.