```
                    PUBLIC HEARING
        STATE WATER RESOURCES CONTROL BOARD
        DIVISION OF WATER RIGHTS
            STATE OF CALIFORNIA
            ---000---
SUBJECT: AMENDMENT OF CITY OF LOS ANGELES' WATER RIGHT
LICENSES FOR DIVERSION OF WATER FROM STREAMS THAT ARE
            TRIBUTARY TO MONO LAKE
                ---000---
                    Held at:
            901 P Street
        Sacramento, California
        Wednesday, November 10, 1993
            VOLUME XI
            ---000---
    Reported by: Kelsey Davenport Anglin, RPR,
        CM, CSR No. }855
```

24
25
25
0 1
01
02
02
0 3
03
04
04 Pacific Southwest Region
05 2800 Cottage Way
0 5 ~ S a c r a m e n t o , ~ C a l i f o r n i a ~ 9 5 8 2 5 ~
06
06
0 7
0 7
0 8
09
09
10
10
10 McDonough, Holland \& Allen
11555 Capitol Mall, Suite 950
11 Sacramento, California 95814
12
12
1 3
13
14 JACK GIPSMAN
14 Office of General Counsel
14 U.S. Department of Agriculture
15
15
16
1 6
17
1 7
18
18
19
1 9
20
20
2 1
21
114 Sansoy at Law
23 San Francisco, California 94104
24
24
25
25
01
0 1
02
02
03
03
COUNSEL AND OTHERS
For the U.S. Fish and Wildlife Service:
ERIKA NIEBAUER
Assistant Regular Solicitor
Office of Solicitor
For the Sierra Club:
LARRY SILVER Ô
For California Department of Fish and Game:
HAL THOMAS
VIRGINIA CAHILL
For the U.S. Forest Service:
JACK GIPSMAN
For the National Audubon Society and Mono Lake
Committee:
BRUCE DODGE
PATRICK FLINN
Attorneys at Law
755 Page Mill Road
Palo Alto, California 94304
For California Trout:
RICHARD ROOS-COLLINS
CYNTHIA KOEHLER
Attorneys at Law
114 Sansome Street, Suite 1200
1 ~ C O U N S E L ~ A N D ~ O T H E R S
For the City of LA and LA DWP:
THOMAS W. BIRMINGHAM
JANET GOLDSMITH

```
```

ADOLPH MOSKOVITZ
Attorneys at Law
Kronick, Moskovitz, Tiedemann \& Girard
400 Capitol Mall, 27th Floor
Sacramento, California 95814
For State Lands Commission, Department of Parks and
Recreation:
JOHN STEVENS
Assistant Attorney General
1515 K Street
Sacramento, California 95814
For Meter Water District of Southern California and
LA MWD:
VICTOR GLEASON
Attorney at Law
1 1 1 1 Sunset Boulevard
Los Angeles, California 90050-0153
FRANK HASELTON
Haselton Associates
JOHN ARCULARIUS
MARY SCOONOVER
PANEL PAGE
MR. DAVID HANSON
Cross-examination by Mr. Roos-Collins 7
Cross-examination by The Staff 36
Cross-examination by The Board 71
Redirect Examination by Mr. Birmingham 74
Recross-Examination by Ms. Cahill 86
Recross-Examination by Mr. Dodge 104
Recross-Examination by Mr. Roos-Collins 115
Recross-Examination by The Staff 119
Recross-Examination by Mr. Roos-Collins 125

```
DR. THOMAS B. HARDY, DR. J. EMIL MORHARDT
Direct Examination by Mr. Birmingham 130
Direct Examination by Ms. Cahill 150
Direct Examination by Mr. Dodge 174
Cross-examination by Mr. Roos-Collins 197
Cross-examination by Mr. Haselton 239
Cross-examination by The Staff 244
    E X H I B I T S
DFG Exhibits No. 13590102
DFG Exhibit Nos. 136-A,B,C,D 93 XX
NAS Exhibit No. 220 XX 104
Cal Trout Exhibit Nos. 23 \& 24225 XX
LADWP Exhibit No. 78278 XX
        MARKED REC'VD
\begin{tabular}{ll}
\hline 01 & CROSS-EXAMINATION BY MR. ROOS-COLLINS \\
02 & \(Q\)
\end{tabular}\(\quad\) Good morning, Mr. Hanson.
A No. I have not read that.
    Q Let me ask you to assume, for the purpose of this
    line of questioning, that the Court of Appeals has
    instructed this Board to establish a flow regime to
    reestablish and maintain the fishery which existed
    before L.A. began diversions in 1941.
07 A Okay.
08
09
09
between a self-producing population of brown trout,
10
11
which you describe on page 45 of your testimony, and
12 A Istoric fishery in Rush Creek?
01

02
0319 A
21
22
01
02
\[
03
\]
13
18 Q Is th

20
```

 regime you recommend would establish a brown trout
 population, quote, comparable to others in the Owens
 Basin, unquote.
 What's the relationship between an Owens Basin
 fishery on the one hand, and the historic fishery in
 Rush Creek on the other?
 A I can't answer that question. I don't, again,
 know what the historic fishery was in Rush Creek. I'm
 using present day conditions, that is what the fishery
 was or is as sampled by the E.A. in the '80s, as
 compared to other eastern Sierra Nevada streams.
 It's not a comparison to what I would consider
 historical fishery levels to be in Rush Creek.
 Q Now, your flow regime would produce 80 percent of
 maximum weighted usable area, according to pages 50 and
 51 of your testimony.
 A Yes.
 Q Is that correct?
 Q What's the relationship between }80\mathrm{ percent of
 model weighted usable area, on the one hand, and the
 historic fishery in Rush Creek on the other?
 A Well, I don't think I can answer that question.
 Again, if you're expecting me to know or have a value
 as to how many fish existed in Rush Creek
    ```
        historically -- I'd also point out that it's very
        difficult to -- this is one of the problems that has
        plagued the IFIM analyses, is to make the jump from
        weighted usable area values to numbers of fish,
        predictions of numbers of fish in the stream as a
        result of that.
            So even if I had some indication of what I felt
        was the, say, pre-historic fishery levels, whether
        these values of weighted usable area, 80 percent or 100
        percent of the maximum weighted usable area would
        achieve those levels of fish population is very
        difficult to say.
        Q Would you give the same answers to the same
        0011
14
15
15
A
16
Q Yestions as applied to Lee Vining Creek?
17
Dr. Morhardt's testimony. In the section entitled,
18
"Will Increase in Weighted Usable Area Increase
19 Populations?" he states, among other things, "Tacit

21 A Well, limiting factors are generally those factors 22 that are thought to have significant impacts on the
13 A Yes. I think that's fair to say
15 Now, you said that you have seen --
15 A I would say it has the potential to limit, if the
16 weighted usable area values are exceedingly low.
17 Q Before Judge Finney, we had several months of
18 testimony last year about limiting factor analysis,
19 which I understood to be a systematic method for
20 collecting and evaluating data to determine which of
21 the candidate factors actually limit fish population in
22 a given stream.
23
24
24 analysis for Rush Creek?
25 A Only in the sense that I've reviewed the Cal Fish
        personally, gone through a limiting factor analysis as
        you describe it.
        Q Is it possible that the absence -- strike that.
        Is it possible that the shortage of deep water habitat
        is a limiting factor in Rush Creek today?
        A Well, anything's possible, of course. I think the
        deep water habitat or lack of pools in the stream
        probably does not limit the fishery based on the
        population data that has been collected on the river
        for those years that were described in Dr. Morhardt's
        testimony.
        Q Let me read to you from page 21 of L.A. Exhibit
        15, The Instream Flow Analysis for Lower Rush Creek. I
        believe you previously discussed this passage with
        Mr. Dodge.
            It states, "If in fact the habitat preference
        curves developed in the study are correct, and brown
        trout adults and juveniles in Rush Creek prefer depths
        greater than 2.0 feet, that the PHABSIM, that's
        P-H-A-B-S-I-M, analysis clearly shows the habitat
        improvement cannot be gained by flow manipulation.
        Regardless of the amount of water that is released
    from Mono Gate Number One, the water in most of the
    macro habitat in Rush Creek is simply too shallow. The
\(00160 \hat{}\)
are suitable are pools."
\begin{tabular}{|c|c|}
\hline 02 & ld it be reasonable to conclude from that \\
\hline 03 & statement that increasing the availability of two-foot \\
\hline 04 & and deeper habitat might affect the fish population in \\
\hline 05 & Rush Creek? \\
\hline 06 & A I would say, yes, it would have a beneficial \\
\hline 07 & effect. The question from the weighted usable area \\
\hline 08 & perspective or from the IFIM perspective is: If you try \\
\hline 09 & to do that in these runs and riffles which are \\
\hline 10 & inherently shallow and dominate the stream, then by the \\
\hline 1 & time you start achieving those depths and velocities, \\
\hline 12 & excuse me, the depth that you're going after, the \\
\hline 13 & velocities may become so swift that you're \\
\hline 14 & counteracting the benefit of the depths. \\
\hline 15 & Q Understood. Let me ask you about Cal-Trout \\
\hline 16 & Exhibit 15, which is a Trihey and Associates \\
\hline 17 & publication entitled, "Summary Comparison of Pre-1941 \\
\hline 18 & and Post-1941 Conditions Affecting Fish Populations in \\
\hline 19 & Lower Rush Creek Mono County, California," dated \\
\hline 20 & September 1993. \\
\hline 21 & Have you previously seen this publication? \\
\hline 22 & A No, I have not. \\
\hline 23 & Q So you would not have any basis for disputing \\
\hline 24 & Mr. Trihey's conclusion that the channel form riparian \\
\hline 25 & vegetation and other conditions which might affect the
0017 \\
\hline 0 & fishery have been degraded between 1941 and the \\
\hline 02 & present? \\
\hline 03 & MR. BIRMINGHAM: Objection. Assumes facts not in \\
\hline 04 & evidence. \\
\hline 05 & Q BY MR. ROOS-COLLINS: If that were Mr. Trihey's \\
\hline 06 & conclusion in this \\
\hline 07 & HEARING OFFICER DEL PIERO: Sustained. \\
\hline 08 & MR. ROOS-COLLINS: Excuse me, Mr. Del Piero. I \\
\hline 09 & withdraw the question. \\
\hline 10 & Q BY MR. ROOS-COLLINS: If that were Mr. Trihey's \\
\hline 11 & conclusion in this report, you would have no basis for \\
\hline 12 & disputing it? \\
\hline 13 & A That's correct. I have not evaluated that. \\
\hline 14 & Q Do you have an opinion whether the loss of channel \\
\hline 15 & length, between 1941 and the present in Rush Creek, \\
\hline 16 & affects the fishery in Rush Creek today? \\
\hline 17 & A I have not studied those types of changes, and I \\
\hline 18 & really don't have an opinion on the subject as to \\
\hline 19 & whether there was or was not a loss in length and what \\
\hline 20 & effect that might have on the fishery today. \\
\hline 21 & Q Let's turn now to the suitability curves which \\
\hline 22 & you've discussed in your testimony. \\
\hline 23 & Page 45 you state that, "The Department of Fish \\
\hline 24 & and Game uses site specific criteria only for adult \\
\hline 25 & fish." \\
\hline & 0018 \\
\hline 01 & Is that correct? \\
\hline 02 & A Actually, that's what it says, but in fact, the \\
\hline 03 & correct life stage is juvenile. Miss Cahill pointed \\
\hline 04 & that out yesterday. \\
\hline 05 & Q Excuse me. You did make that correction yesterday \\
\hline 06 & in your testimony. \\
\hline 07 & The implication of your testimony is that the \\
\hline 08 & published criteria used by the Department of Fish and \\
\hline 09 & Game are less reliable than the site-specific criteria \\
\hline
\end{tabular}
which E.A. developed. Was that your implication in your testimony?
A Well, there is that concern, yes. I mean, whenever you're bringing in data from the literature from -- data collected on other streams, there is that concern.

One thing that is typically done in instream flow studies when data are transferred from one area into another is what's called a validation study, which is a collection of some data to determine whether you feel you have adequately validated the data that you're proposing to use from the literature.

So there always is a concern when you're using data from another stream. And it's generally agreed that site-specific data is better than -- so let's say, curves generated from site-specific data are better
\begin{tabular}{|c|c|}
\hline 01 & than curves taken from the rature.ô \\
\hline 02 & Q Better than? \\
\hline 03 & A Better than, which means more appropriate. \\
\hline 04 & Q Wouldn't that depend on the representativeness of \\
\hline 05 & the transects used to establish the site-specific \\
\hline 06 & criteria? \\
\hline 07 & A You don't use transects to establish the \\
\hline 08 & site-specific criteria. Site-specific criteria are \\
\hline 09 & established by the snorkeling process. The transects \\
\hline 10 & are the hydraulic end of the PHABSIM model. \\
\hline 11 & Q Then let me ask a more proper question. Wouldn't \\
\hline 12 & the utility of the site-specific criteria depend on the \\
\hline 13 & accuracy of the data collection and analysis that went \\
\hline 14 & into the creation of those criteria? \\
\hline 15 & A Of course it would, yes. \\
\hline 16 & Q Do the site-specific criteria used by E.A. for the \\
\hline 17 & Rush Creek IFIM include cover? \\
\hline 18 & A No. Depth and velocity. \\
\hline 19 & Q Depth and velocity only, no cover? \\
\hline 20 & A That's right. \\
\hline 21 & Q Doesn't cover affect the location and population \\
\hline 22 & of fish? \\
\hline 23 & A Cover is a variable that is sometimes included in \\
\hline 24 & instream flow studies, yes. \\
\hline 25 & Q So you excluded cover? \\
\hline & 0020 \\
\hline 01 & A Yes. \\
\hline 02 & Q And you agree that it might affect the location \\
\hline 03 & and population of fish? \\
\hline 04 & A There are several reasons why I excluded the \\
\hline 05 & cover. Because the cover curves, or the manner in \\
\hline 06 & which cover was defined in the IFIM study done by Beak, \\
\hline 07 & is cover analysis that I have some problems with. \\
\hline 08 & There are what are called cover-specific weighted \\
\hline 09 & usable area curves that were generated by the Smith and \\
\hline 10 & Acitunal (phonetic) Report 1987 for eastern Sierra \\
\hline 11 & Nevada streams. And the application of those curves to \\
\hline 12 & instream flow studies has always been problematic from \\
\hline 13 & my point of view. \\
\hline 14 & I have used them on other studies, on our IFIM \\
\hline 15 & studies that we've done, for example, on Bishop Creek \\
\hline 16 & and elsewhere and have run into theoretical problems \\
\hline
\end{tabular}
    with the application, not only from the standpoint of
    the data collection, but from the standpoint of
    applying them to the transects.
            There are, in fact, difficulties with applying
    them in the standard PHABSIM model as it stands,
    because the PHABSIM model, for example, doesn't allow
    for cover-specific curves. There's only supposed to be
    one curve of depth and velocity that is applied to the
    model. And in this case there's a separate curve for
                                    0021
    four different cover types.
    Q So, Mr. Hanson, you did not include cover in your
    site-specific suitability criteria, because there are
    problems with including cover in any such criteria?
    A There's problems with including the cover in the
    manner in which it was collected on the transects on
    Rush Creek.
    Q But wouldn't you agree that there are problems as
    well excluding cover from --
    A Well, the primary --
    Q -- the site-specific criteria?
    A Pardon me.
    Q If your purpose is to determine the location and
    population of fish?
    A The primary variables of the IFIM models are depth
    and velocity. Cover doesn't change the function of
    depth and velocity. Excuse me. Cover does not change
    the function of stream flow in the model.
        The most important variables are depth and
    velocity. The key variables that almost always drive
    these analysis are depth and velocity.
        There are several other factors that are often not
    included in IFIM studies that could also be added if
    you had a mind to add those.
        The effect of including or excluding cover from
    your analysis or substrate or any other physical
    variable that doesn't change as a function of flow,
    shape of the curve
    as much as it has to do with changing the total amount
    of habitat that's being predicted.
            I've looked at this on several studies before, and
        oftentimes, including or excluding cover, depending
        upon the distribution of cover to some degree, just
        changes the total amount of habitat that's being
        predicted. But the shape of the curve oftentimes
        remains relatively unchanged. And that's, again, a
        function of the fact that cover doesn't change as a
        function of flow.
            Depth and velocity are very dynamic in the system
    and very critical and sensitive in terms of the output.
    But cover is not as sensitive. And I would point out
    that there are a great many instream flow studies done
    throughout California where cover is not a variable.
    Q Understood. But there are many where cover is a
    variable, correct?
    A I don't have a count, but \(I\) can tell you in many
    of my experiences there are cover; there is not cover.
    Q In any event, your site-specific criteria were
\begin{tabular}{|c|c|}
\hline & applied in this IFIM without regard to the presence or \\
\hline 25 & absence of undercut banks, boulders, trees and other \\
\hline 01 & items which might provide cover? \\
\hline 02 & A That's right. \\
\hline 03 & Q Let's turn to page 46 of your testimony, section \\
\hline 4 & \(A\), where you state, with respect to the Department of \\
\hline 05 & Fish and Game report, "This results generally in \\
\hline 06 & different flow recommendations for each month of \\
\hline 0 & different water years," parenthetical, "dry, normal and \\
\hline 08 & wet," close parenthetical \\
\hline 09 & "This exercise is unnecessary given that Rush \\
\hline 10 & Creek flows have been incontrovertibly altered." \\
\hline 11 & What does that statement mean? \\
\hline 12 & A That statement means that the small differences in \\
\hline 13 & flow that are recommended by the California Department \\
\hline 14 & of Fish and Game in my view do not make much difference \\
\hline 15 & in terms of weighted usable area. \\
\hline 16 & If you -- the method by which they came to their \\
\hline 17 & flow recommendations was this habitat duration \\
\hline 18 & analysis. And it was a standard approach. And I don't \\
\hline 19 & think that it -- that in applying it, they evaluated \\
\hline 20 & the weighted usable area curves. \\
\hline 21 & If you look at those weighted usable area curves \\
\hline 22 & from the Cal Fish and Game report, you'll see that \\
\hline 23 & there's a fairly flat plateau. I don't have my graph \\
\hline 24 & up here for the adult brown trout curve, but the brown \\
\hline 25 & trout curve for adults, for juveniles, and for \\
\hline & \begin{tabular}{l}
0024 \\
awning, all sort of come up to this threshold value,
\end{tabular} \\
\hline 02 & around this 20 to 30 cfs flow range. And then are \\
\hline 03 & relatively flat beyond that. \\
\hline 04 & Cal Fish and Game recommendations are within that \\
\hline 05 & flat area. And they're bouncing up and down by a few \\
\hline 06 & cfs. And I think from a weighted usable area \\
\hline 07 & perspective, those differences are indistinguishable \\
\hline 08 & from one another. That's what that statement says. \\
\hline 09 & MR. ROOS-COLLINS: Mr. Del Piero, I request an \\
\hline 0 & additional 20 minutes due to the complexity of the \\
\hline 11 & issues and also the centrality of this witness' \\
\hline 12 & testimony to the section 5937 \\
\hline 13 & HEARING OFFICER DEL PIERO: Granted. \\
\hline 14 & MR. ROOS-COLLINS: You discussed yesterday that \\
\hline 15 & your recommendation is for a flow between 20 and 30 \\
\hline 16 & cubic feet per second. \\
\hline 7 & Leaving aside whether it's 20 or 30 cubic feet per \\
\hline 18 & second or somewhere in between, are you recommending \\
\hline 19 & that the flow in each month be the same but for \\
\hline 20 & whatever time this flow occurs? \\
\hline 21 & A More or less. Basically, what I'm saying is that \\
\hline 22 & the flows for any given month should not fall below \\
\hline 23 & that range. The -- if there are other reasons for \\
\hline 24 & flows being outside of that range, for any other \\
\hline 25 & purpose, then I don't have an argument with that. \(\begin{array}{r}\text { I'm } \\ 0025\end{array}\) \\
\hline 0 & talking about the minimum values below which flows \\
\hline 02 & ought not to fall. \\
\hline 03 & Q Let's leave aside channel maintenance flow. Let's \\
\hline Ô & \\
\hline & any flow necessary for protection of the \\
\hline
\end{tabular}
\(\qquad\)
public trust in Mono Lake or any other environmental
purpose, and focus only on a flow to produce 80 percent
of the maximum weighted usable area.
        Your recommendation is that this Board fix a
monthly flow to not vary from month to month?
A That's correct, with the exception of a flushing
flow.
Q How would such a fixed flow regime compare with
the natural flow regime in Rush Creek?
A Well, the natural flow regime in Rush Creek
obviously varies to some degree. It's a standard
practice in instream flow studies to recommend stream
flows that are constant.
            If you look at stream flows that are set up at
hydroelectric projects, they're constant from month to
month. Sometimes they vary, but the standard is to
have a fairly constant flow based on the same kind of
analysis, the same kind of assessment of results of the
weighted usable area that I've talked about here.
Q Right. That may be the standard in other
proceedings, for example, before the Federal Energy
                            0026
Regulatory Commission. But this is the State Board,
and this is, among other things, a section 5937
proceeding.
    In this proceeding are you comfortable making a
    recommendation that the flow regime for fish purposes
    be fixed, and not vary from month to month?
    A From the standpoint of what \(I\) think the impact
    that would have on the fishery, yes. I don't think
    that a constant flow is going to be detrimental.
    Q Do you disagree, then, with Dr. Beschta's
    testimony that the flow regime should mimic natural
    variability?
    A I think Dr. Beschta was speaking more toward
    riparian and geomorphological characteristics of the
    stream.
    Q Would you agree that riparian and geomorphologic
    characteristics of the stream have a direct effect on
    fish, though, wouldn't you?
    A Yes.
    Q If there are no trees, there won't be many fish?
    A Well, I thought you asked me a minute ago to put
    all that aside and just focus on the weighted usable
    area.
    Q I did. I did. And so your answer concerns the
    relationship between weighted usable area and flow?
                                    0027
        A If there are other considerations posed by other
        parties, then I -- I, again, say that if those flows
        needed to perform other functions, riparian
        geomorphological, delivering water to Mono Lake for
        whatever purpose, are above the minimums, I'm not
        saying that's going to have a negative impact on fish
        habitat from weighted usable area perspective.
        Q So you aren't expressing an opinion about the need
        for flow for riparian or geomorphic purposes?
        A That's correct.
        Q Or the amount of flow necessary for those
        purposes?

```

A That's on page 51?
HEARING OFFICER DEL PIERO: Excuse me. Mr.
Hanson, just for a clarification purposes, in regards
to the line, the zero percentage line?
MR. HANSON: Um-hum.

```
13
14

15 Q
Rush Creek. Your testimony states or describes a lack
17 of a relationship.
18 A Well, that's not specific to Rush Creek.
19 Q I see.
20 A That lack of relationship is based on data from
21 several other streams besides Rush Creek.
22 Q In Rush Creek, is there a relationship between
23 stream flow and biomass?
24 A I haven't evaluated that specifically.
25 Q You have not evaluated, specifically, what

01 relationship exists, if any, between stream flow and
```

biomass in Rush Creek?
A I have not just looked at the Rush Creek data in
comparison to biomass and stream flow levels.
Q Well, let's assume for the moment that the results
in the Owens Basin apply to Rush Creek. If there is a
lack of a relationship between biomass and stream flow,
why not recommend five cubic feet per second?
A Well, you know, there are conflicting -- there are
conflicting data that sometimes suggest that flow may
not be as strong a variable as we think it is.
I still believe that the weighted usable area data
are a good indication of space availability for fish
for feeding stations, if you like, the total square
feet of area that's usable for fish.
And there have been studies, it's again one of
these problems sometimes with IFIM studies, that there
has not been a strong relationship shown or correlation
between IFIM results and biomass or population levels
of fish.
Q Mr. Hanson, I appreciate and Cal-Trout appreciates
the difficulties of using IFIM for any regulatory
purpose and also the utilities of using it for any
regulatory purpose. But you're here today to advise
this Board what flow regime would satisfy its objective
0033
in this proceeding.
So my question to you is: Is there a relationship
between trout biomass and stream flow in Rush Creek
that you're willing to stand by in establishing a
recommended flow regime?
A I'm willing to stand by the results based on the
as -- the results of the IFIM, based on the assumption
that there is, and this is an assumption, a
relationship between stream -- or rather weighted
usable area and biomass or fish population numbers.
Q Okay. Let me ask you to assume that this Board,
or the El Dorado Superior Court, adopts a restoration
program that involves channel intervention. Okay?
Let me ask you to assume, more specifically, that
the restoration program addresses the losses in channel
form and length described in Cal-Trout Exhibit 13, by
Dr. Scott Stein entitled, "Past and Present Geomorphic,
Hydrologic and Vegetative Conditions on Rush Creek",
dated September of 1992.
And to provide some of those specifics, he states,
"Today Rush Creek below the narrows flows from a
channel that is from roughly }70\mathrm{ percent to over 200
percent wider than the pre-1941 channel.
He also states that, "One half or more of the
channel length in the bottom lands has been lost
between 1941 and the present."
He also states that, "The same flow that
previously created two to four feet of water depth now
creates only six inches to one foot of depth in the
bottom lands."
Assume that the restoration program corrects all
flow recommendation
08 change?

```
ô
```

A That's a complicated question.
Q And I apologize for asking the complicated
question.
A I'm not certain I can come up with an answer that
easily because of the complexity of the question.
Q Then, Mr. Hanson, let me withdraw that. Let's
assume that a restoration program increases the channel
depth, narrows the channel width, and rewaters
currently dry channels. Would your flow recommendation
change?
A Probably not. Because some of those processes
that you've just described may be happening already
based on Dr. Beschta's testimony. And those are the
kinds of changes that I think would be beneficial to
the fishery along the lines of some of my
recommendations, and the instream flow report that
pools be created in Rush Creek.

```
k0035
The same idea that is described in your question is the idea I had relative to instead of putting more water down to create the deeper water, if natural processes or man-induced efforts deepened the stream, that would be beneficial. My flow recommendation wouldn't change, probably.
Q Cal-Trout concurs with your suggestion, that natural processes do affect channel form, as I stated at the outset of my cross-examination of Dr. Beschta. Whether the changes in channel form come about through natural processes or restoration program or both, wouldn't the rewatering of channel length, now dry, substantially change the weighted usable area in the existing channel?
A Well, it depends on what the flow is. If the flow is at a given level, and a channel is rewatered, then there may be a drop in the weighted usable area in the main channel.

If the flow is higher and, say, it's too swift and water is returned to side channels, then there may be improvement in the channel. So it's all a function of what the flow is, whether or not rewatering those sections would be an improvement or not.
Q Let's say that we double the available channel length in the bottom lands of Rush Creek. Are you

0036
prepared today to express an opinion whether your recommended flow regime would maximize weighted usable area?
A I cannot answer that question.
Q How -- excuse me. How do Parker and Walker Creeks fit into your flow recommendation for Rush Creek?
A I had not considered Walker and Parker Creek. To the extent that flows enter in from Walker and Parker Creek, however, augment the flows and reach the level of flow and habitat that is part of my recommended release that would be part -- I mean, they would be involved.

What I'm saying is to some degree, my analysis was based on a release from Mono Gate Number One, assuming no input from Walker or Parker Creek.
Q One last question. Do you have an opinion about
```

the advisability in fish population in terms of
rewatering the stretch of Rush Creek between Grant Dam
and the confluence of the return ditch?
A I haven't evaluated that area well enough to
provide an opinion on that.
Q Thank you. No further questions.
HEARING OFFICER DEL PIERO: Thank you very much,
Mr. Roos-Collins. Miss Scoonover?
MS. SCOONOVER: I have no questions of the
0037
witness.
HEARING OFFICER DEL PIERO: No questions.
Miss Niebauer's not here today. Do we have anyone
else? Mr. Frink?
MR. FRINK: Yes.
HEARING OFFICE DEL PIERO: I'm getting better
Mr. --
FRINK: Frink, yes. I have a few. And I
assume Mr. Herrera may have some more.
CROSS-EXAMINATION BY THE STAFF
Q BY MR. FRINK: Mr. Hanson, in your experience, have
you found that it is common for flow recommendations
that are based on an IFIM study to include separate
recommended flows for dry, normal and wet years?
A Sometimes and sometimes not.
Q In the instances in which they do include flow
recommendations that are based on a dry, normal and wet
year flow scenario, what's the reason for having the
flow recommendations based on your type, instead of
relying on a single-flow recommendation for all years?
A No, those cases, as I stated -- the flow
recommendations that I'm familiar with that are based
on different water years do have a fairly constant flow
for several months.
There are sometimes biological considerations,
0038
different species or different life stages, that are
considered during one month or another. But most of my
experiences, as I think back on this, when we have
normal wet and dry water years, have constant flows for
long periods of time, rather than variable flow regime
changing every month.
Q Okay. But in the instances in which the flow
regime does vary, for a period of months, what's the
underlying assumption for having the variable flow
regime based on water year?
A For each and every month?
Q No. No. I would acknowledge that in many
instances, you may have very similar flows in certain
months under either a dry, normal or wet year flow
scenario.
But the fact that you have three different flow
scenarios for dry, normal and wet years would indicate
that there is a reason for having the difference.
What is that -- what is your understanding of the
reason for having the different flows in dry, normal
and wet years?
A My general understanding is water availability.
That I think, comes into play in hydroelectric

```

24 projects, for example. That's where all my experience generates from primarily. And other considerations are

0039
water year than you
10 would in the normal water year, because you're trying
11 to maintain habitat levels comparable in the
12 post-project to the pre-project. I don't know if I
13 made that clear.
14 Q Yeah. I think you did. So it is based on an
15 attempt to mimic the natural conditions, where in wet
16 years you would normally have higher flows than you
17 have in dry years. Now, do fishery populations
18 generally fluctuate with the fluctuations in flow
19 between dry normal and wet years? Is that a common
20 occurrence?
21 A Yes, I'd say it is.
22 Q And is it common that having the higher flows in
23 wet years serves to offset any losses in the fishery
24 that may occur in dry years?
25 A It's hard to say. It's hard to answer that
01 question. It depends on what the flow characteristics 02 of the wet water year are, whether they would offset,
03 say, poor habitat conditions in the dry water year.
04 Q But -- assuming everything else is equal, though.
05
06
06 additional water that you get, and the additional
07
habitat that may be provided from higher flows in a wet
08
year, serves to offset the less desirable conditions
09
that may occur in a dry year?
10
A That certainly can be the case. But on the other
11 side of the coin there, wet water years sometimes can
```

populations?
A No. That would involve something like these
population response models that I'm talking about,
which is sort of a time-series analysis evaluating the
changing patterns of weighted usable area for the
different life stages, and having one life stage
graduate into another life stage.
And those kinds of analyses allow you to identify
limiting factors or sort of bottlenecks in terms of
weighted usable area.
Q Okay. If the limiting factor for a particular
fish population in a particular stream is food supply
or habitat for one particular life stage of the fish in
that stream, would increasing the available habitat for
0044
a different life stage serve to increase the fish
population?
A That's a good question. And no, it may not.
Because you have a limiting factor going on somewhere
else, and the amount of habitat that you provide for
another life stage may be all for naught because of
that.
Q Okay.
A Those are the kinds of things that do come out
when we do population response models. They're not
often done, but that's the kind of information that you
gather from that analysis.
Q Okay. Similarly, if there were more habitat
available at a given life stage than the fish are
using, then would decreasing the amount of habitat
available for that particular life stage serve to
decrease the fish population?
A Not necessarily, under that assumption.
MR. FRINK: Okay. I believe that's all the
questions I have.
HEARING OFFICER DEL PIERO: Mr. Satkowski?
MR. SATKOWSKI: I just have a couple of questions
to clarify a few things.
Q BY MR. SATKOWSKI: In your testimony, you recommend
that minimum flows between 20 and 30 cfs on Rush Creek
0045
be maintained.
At which point on Rush Creek are you recommending
that these flows be maintained?
A At the point of release on Mono Gate Number One.
Q In L.A. Department of Water and Power's management
plan -- actually, I guess it's their summary of their
management plan, under their fish flow releases
section, they mention periodic flushing flows.
And I think yesterday you had mentioned that you
did not have a recommendation for flushing flows; is
that correct?
A Yeah, that is correct.
Q Do you know -- well, let me read the sentence in
here. It says that, "Periodic flushing flows will be
incorporated into the plan."
Do you know when they will be incorporated into
the plan?
A I don't know the answer to that question. I
didn't develop the plan.

```
```

Q Thank you.
HEARING OFFICER DEL PIERO: Mr. Smith?
MR. SMITH: After Mr. Canaday, please.
HEARING OFFICER DEL PIERO: Mr. Canaday?
MR. SMITH: Oh, Mr. Herrera.
HEARING OFFICER DEL PIERO: I need a program to

```
keep you guys straight. You're all starting to look
alike.
            MR. FRINK: Tired and unshaven.
Q BY MR. HERRERA: First of all, I'd like to discuss
your reports that E.A. apparently prepared. There was
three of them that were presented the other day for us
to consider, in your testimony, and of which you
indicated there was one or two of them that you had no
participation in preparation of?
A Yeah. I was not involved in the preparation of
ô
reports.
    12 Q And those were prepared by staff at E.A.?
A That's correct.
Q But you had no --
A Well, only in a sense that \(I\) may have discussed
some of the issues that were to be brought up and some
of the data. But I did none of the writing, for
example, on those reports.
Q I notice some of the dates on these go back
several years, 1990 and before. To your knowledge,
when were these reports made available to -- for
example, Department of Fish and Game or to Jones and
Stokes?
A I submitted -- well, we -- I, E.A. submitted
    those reports on the date that's indicated there to the
                                0047
Department of Water and Power. And I don't know at
what point they were then transmitted to other parties.
Q And they were submitted shortly after the dates
that are listed on those?
A Essentially in the month. I think there's a month
given. Most of those reports, we hold to that month.
We put the month that it was published and produced and
shipped for the most part.
Q Could you tell me a little bit about the review of
those materials? Was that sent out for any other
review other than that of E.A. or LA DWP?
A I don't believe it was.
Q Okay. So the only ones that had looked at it at
that time when you submitted it to L.A., was just
yourself and E.A.'s staff, I'm assuming, and the LA
DWP?
A Yes, that's correct.
Q I'd like to change subjects here just a little
bit. When you were discussing the IFIM process, you
    indicated that there was four primary items that were
    used: depth, velocity, substrate, and cover. And E.A.
    adopted to use depth and velocity only. And you
    discussed a little bit further about cover, why cover
    wasn't used. Can you discuss a little bit why
    substrates were not used?
```

 A Well, for a couple of reasons. First of all, I do
 not believe that substrate necessarily defines the
 position at which you see a fish, or defines the
 suitability of the habitat, with the one exception of
 spawning criteria.
 For the fry juvenile and adult life stages,
 I don't think where you observe a fish, whether it's
 over gravel, cobble, rubble, or boulders or bedrock is
 the determining factor defining the position that that
 fish is holding. It's nearly purely depth and
 velocity.
 And that -- in fact, when we are doing instream
 flow studies that don't include spawning, substrate is
 generally not considered.
 Q So what you're saying is substrate does not
 provide habitat for the fishery?
 A Substrate does provide habitat. I mean
 substrate --
 Q I'm sorry. Other than spawning. Excuse me.
 A Yeah. Substrate is critical, of course, to the
 spawning life stage. But it is not as important to the
 other life stages.
 Q How important would you say cover is to life
 stages, various life stages?
 A Cover is important.
 0049
 Q Very important or --
 A Well, a stream that doesn't have any cover isn't
 going to have many fish in it. And I think that's the
 explanation I gave for why the return ditch -- for
 example, I had recommended that some boulders and some
 riparian vegetation be put in, because it essentially
 lacked cover when I viewed it in 1987. There have been
 some changes to it.
 But -- the reason that I didn't include cover in
 the analysis I've described, briefly, in response to
 Mr. Roos-Collins' questions, and I don't know if you
    ```
through that again --
    13 Q No, not necessarily.
    14 A I'm not saying that cover's not important, but I
    15 think the points that I've made are that I do have a
    16 fundamental problem with the cover as it's used in the
    17 criteria that were developed by the Department of Fish
    18 and Game and collected on the transects.
            When you're moving across these transects, you
        have to make a decision of whether there's object
        cover, no cover, or what's called overhead cover.
            First of all, I'm not certain that there is any
        such thing as a fish sitting in a place with no cover.
        Most of the positions that a fish is sitting at,
        particularly brown trout, has some cover associated
            0050
        with it. There's no question about that.
            The problem is where -- what cover is that fish
        responding to? Where are the hiding places that that
        fish inherently knows of and runs to when frightened.
        The distance to those places, whether they're above the
        transect, below the transect, on the transect line --
```

those are some of the problems that I'm talking about.
Those are very difficult things to know.
Q But in your analysis of the Rush Creek, in looking
at the transects, you did not consider cover?
A That's correct.
Q And the flow recommendations that you made did not
consider cover?
A That's not quite correct, because I evaluated the
results of the E.A. studies and the results of the Fish
and Game studies, which had these cover-specific
curves. And my recommendations to you are based on an
evaluation of both sets of results.
Q Were you here during Dr. Beschta's testimony?
A Yes.
Q There were some questions asked of Dr. Beschta
about what kind of flows -- what kind of vegetation
would be maintained by various flows.
And the question was: Somewhere around 20 cfs,
would that -- what would that do to the riparian
0051
vegetation? Was it good or bad? And his comment was
that at 20 cfs, it would diminish revegetation
significantly. And it would also not support or
reestablish vegetation.
And your flow recommendation of 20 to 30 cfs is
somewhat contradictory with what Dr. Beschta is saying
for maintaining cover --
A My understanding of Dr. Beschta's response to that
question is that he was responding to a proposed
permanent 20 cfs flow regime. Not a flow regime where
there is periodic high flows released for the purposes
of channel maintenance, riparian maintenance and
flushing of sediments.
Q I think that was his point, was that there was a
flow regime that existed well above 20 cfs that
mimicked the natural flow regime, is what he was
discussing.
A Well, yes, but I think he was also describing a
circumstance where that flow, whatever the value of
that flow is, occurs for a very short period of time.
I remember he was talking about a day or so of a
peak flow to perform these functions, followed by a
ramping up and a ramping down. And that necessarily
wouldn't even be recommended for each year. This is,
again, getting back to this need for channel
0052
maintenance flows, and how often do you need to release
channel maintenance flows.
The question that I'm addressing is: Once you've
released water for the purposes of meeting the needs
that Dr. Beschta was speaking of, what minimum flows
should the creek fall to and still maintain adequate
trout habitat.
Q Well, I guess my point there was that Dr. Beschta
was recommending flows that were -- appeared to be
higher than your recommendations to maintain the
vegetation, which is again your -- as you're stating
that cover is essential to the fishery. And yet you're ô

```
```

sufficient.
A }20\mathrm{ to }30\mathrm{ is the minimum value that you would fall
to once you have released flows for other purposes, is
what I'm saying. Based on the results of the weighted
usable area versus discharge curves that have been
generated by E.A. and by Cal Fish and Game, I'm saying
that the minimum that you would take the stream down to
is 20 to 30 cfs range.
If there are other purposes, channel maintenance,
riparian vegetation maintenance, flushing of sediments
from the gravels, whatever your other -- your other --
Q So what you're saying is other flows are necessary
_0053
for the development of channels, the complexity of the
stream itself, for pools that you discussed a little
earlier. That's what you're saying? There's other
flows to do that? And once that's done, then your 20
cfs to 30 cfs scenario is appropriate to maintain those
conditions?
A Yes.
Q As a fishery biologist, can you give me just an
opinion on how important you think substrate and cover
is to the reproduction of trout?
A Well, I don't think cover is important during --
you're talking about the reproductive process?
Q Um-hum.
A Spawning, for example?
Q What would -- would it maintain the reproductive
conditions or availability for reproduction in the
stream, self-sustaining reproduction?
A Well, there has to be an adequate supply of
spawning gravels or spawning substrate for the process
of spawning, for successful spawning. There's no
question about that.
I don't think many spawning fish are as concerned
about cover as other fish. They -- when fish are
spawning, they generally aren't utilizing cover to the
extent they are when they're not spawning. You can,
0054
for example, go up to spawning fish and come quite
close to them, and they don't spook in the manner in
which they do when they're not spawning.
So I don't think cover's important. Substrate is
critical.
Q And that was, again, that's the area that you
didn't --
A Yeah. I didn't model spawning substrate for the
purposes I described in my oral testimony.
Q Your comment, too, was that in an IFIM -- that in
the process that you used with depth and velocity --
that cover does not change with depth or velocity?
A That's correct.
Q That's correct?
A From the model perspective.
Q So the model's not picking up -- because you did
not include substrate and cover, it does not analyze
cover in depth and velocity in your transects. Just
depth and velocity. Not having anything to do with
whether cover was there or --
A That's right.

```
```

 22 Q While we're on depth and velocities a little bit,
 you indicated that, generally, by increasing depths in
 the stream channel, it would increase the velocity of
 the flow, which would be somewhat detrimental to the
 0055
    ```
```

habitat there; is that correct?

```
habitat there; is that correct?
A Well, as flows increase, depths increase and
A Well, as flows increase, depths increase and
velocities generally increase. And depending upon your
velocities generally increase. And depending upon your
habitat suitability criteria, at some point the
habitat suitability criteria, at some point the
velocities, or even the depths for that matter, if
velocities, or even the depths for that matter, if
you're talking about a life stage like fry are looking
you're talking about a life stage like fry are looking
for shallower depths perhaps. Those increasing depths
for shallower depths perhaps. Those increasing depths
or increasing velocities start going on the downside of
or increasing velocities start going on the downside of
the habitat suitability curve, and weighted usable area
the habitat suitability curve, and weighted usable area
will decline as a result of that.
will decline as a result of that.
Q In terms of -- let me change gears here a little
Q In terms of -- let me change gears here a little
bit. You talked a little bit about your observations
bit. You talked a little bit about your observations
and the methods you used for observations. You used Ô
```

and the methods you used for observations. You used Ô

```

\section*{were}
```

15 residing, so to speak, and snorkeling?
16 A No. We didn't use electrofishing at all.
17 Q You mentioned -- you didn't use electrofishing at
18 all in any of your analysis of the streams?
19 A I'm quite certain of that. I wasn't there for all 20 the field studies, but we never used electrofishing for 21 that purpose. Sometimes it's used in these studies,
22 but it's often used in rivers where the water is murky, 23 and you can't actually see the fish. But typically in 24 instream flow studies done in the Sierra Nevada, it's 25 not used. Sometimes bank-side observation is used.

```
Q You indicated that E.A. has some on-going studies
```

Q You indicated that E.A. has some on-going studies
in the Mono Basin there. And one of those was, you
in the Mono Basin there. And one of those was, you
have some sort of electrofishing going on, some sort of
have some sort of electrofishing going on, some sort of
transect analysis. Could you tell me what those are?
transect analysis. Could you tell me what those are?
A Well, we don't have any on-going studies in Rush
A Well, we don't have any on-going studies in Rush
Creek right now. There had been some studies -- and
Creek right now. There had been some studies -- and
frankly, I wasn't involved in those studies to a large
frankly, I wasn't involved in those studies to a large
degree. So I can't be very specific about what those
degree. So I can't be very specific about what those
studies were doing, and what number of transects were
studies were doing, and what number of transects were
involved in those studies.
involved in those studies.
But we were doing studies looking at some weighted
But we were doing studies looking at some weighted
usable area calculations in specific habitat types. We
usable area calculations in specific habitat types. We
also did some habitat suitability studies, looking at
also did some habitat suitability studies, looking at
more habitat use observations than we had done in
more habitat use observations than we had done in
1987. That was part of a study that we were doing for
1987. That was part of a study that we were doing for
the Electrical Power and Research Institute. But my
the Electrical Power and Research Institute. But my
knowledge of what exactly was done on those studies is
knowledge of what exactly was done on those studies is
limited, because I was not actively involved in it.
limited, because I was not actively involved in it.
I'm peripherally involved in them.
I'm peripherally involved in them.
Q Let's go back to velocity just a little bit. We'd
Q Let's go back to velocity just a little bit. We'd
heard from previous witnesses that -- you used the term
heard from previous witnesses that -- you used the term
sinewocity, which is quite a term. But talking about
sinewocity, which is quite a term. But talking about
creating, I guess, for maybe a little simpler term,
creating, I guess, for maybe a little simpler term,
meanders or adding actual length to the stream, rather
meanders or adding actual length to the stream, rather
than it's typified now as being fairly straight,

```
than it's typified now as being fairly straight,
```

```
moderate flows, and if we went to -- if we were to
attempt to develop a meandering stream or to go back to
what has been depicted, it was in pre-diversion times,
would that change your comment regarding the velocity
being detrimental to the fishery?
A Well, I don't think I'd state it explicitly, the
velocity is detrimentable to the fishery. First of
all --
Q Let me clarify a little bit. You stated earlier
that if you were to increase the depth or add water to
increase the depth of the stream, that it's likely that
velocity would become detrimental to the habitat in the
stream.
Now if we added the meandering scenarios here,
would that velocity still be detrimental to the
habitat?
A It could or it could not. If you add meandering,
you're generally in an area where it's very low
gradient to begin with. Meandering doesn't occur in
steep gradient sections of the stream in any case. I
think where meandering might take place is already in
an area that is low gradient and may not have the same
problem.
Remember, Rush Creek has different reaches that we
looked at. There's a big difference between, for
```

0058
example, what we call Reach B, which was an upper
canyon -- I don't know if you've been to the stream,
but the upper section is sort of in a small little
canyon. There's not going to be any sinewocity in
there. The area right below that is sort of a long run
of riffle and rock garden --
Q I'm quite familiar with this area.
A Okay. Where the sinewocity would occur, where you
could create sinewocity by some of these methods, is
probably down in the area that we call the meadow, the
lower area below the notch. And I'm not certain that
even in that area that you would have this problem with
velocities, because you already have a low gradient
section of stream where adding additional flows there ô

```
suitability criteria.
Q So in other words, the area you're discussing is
probably just directly above the old 395 bridge to the
narrows?
A No, the area I'm thinking of is, I think it was
referred to generally as the bottom lands.
Q Okay. As a fishery biologist, how would you
depict IFIM as a tool to determine the flows necessary
to sustain a fishery?
A How would I depict it?
                                    0059
Q Yes. Is it a useful tool? Is it an exacting
tool?
A Well, I'll put it this way. It's a very commonly
used tool. It has its problems, as I think I've
already described. Sometimes the relationship between
weighted usable area and fish populations and biomass
has not been well established, and there have been some
```

criticisms of the method for that reason.
But it is still used considerably in just about
any study relating to stream flow and rivers and its
relationship to or its impact on fish. So --
Q Are there other studies other than IFIM that's
used for that purpose?
A There are other techniques that are used in the
place of IFIM. IFIM is sort of like an umbrella
study. The purpose of IFIM is to look at all factors
that may limit the fish populations. If you look at
the literature that's developed by the U.S. Fish and
Wildlife Service on this method, the notion is that
you're looking at all potential limiting factors. And
that could include habitat as predicted by the model
that we've talked about here, this PHABSIM model, which
is just one element of IFIM. The evaluation of water
temperature and other limiting factors such as food,
are all part of the overall umbrella of IFIM, if you

```
talk to the authors of the IFIM.
Q Okay. But essentially, the IFIM is the process
    used today. There really is, underneath the umbrella
    of that, there's a number of other things. But that's
    accepted methodology?
    A Absolutely. There are other methods used. People
    in the southeast, for example, don't use the IFIM.
    They don't believe in the IFIM. They have other
    techniques that they will apply in certain instances.
    Q It really is designed for a certain purpose, too.
    Any way, that really concludes my questions. Thank you
    very much.
            HEARING OFFICER DEL PIERO: Mr. Canaday?
        Q BY MR. CANADAY: Mr. Hanson, earlier you testified on
        what you -- where you establish your release point for
        the minimum flow recommendations, you said that was at
        Mono Gate One?
        A That's right.
        Q Do you know if Rush Creek below that point is a
        gaining reach or a losing reach?
        A It's a losing reach to my knowledge.
        Q Well, if it's a losing reach -- therefore, if
        we -- if the release was 30 cfs to maintain the
        fisheries in good conditions at Mono Gate One, then you
        could not assure that that same release was being met
```

 0061
 as it entered the lake; is that correct?
A The release, the actual amount of water released
from Mono Gate One, yes, would not necessarily be the
same volume of water entering Mono Lake. But the
analyses done both by E.A. and Fish and Game took
that -- that losing aspect of the stream into
consideration.
Those weighted usable area curves are based on an
integration of the changes in stream flow from the top
of the stream to the bottom of the stream, and reflect
releases from Mono Gate One. I'm quite certain that
both studies evaluated that.
But you're right. The flow changes from the
release point down the river.
$Q \quad$ So if below the narrows, you were to open up some ô

```
that 30 cfs
    1 7 \text { might not be adequate to permanently rewater those}
    channels, to make the full beneficial use of the
    existing channel morphology than for fisheries?
    A I suppose that's possible, but I haven't evaluated
    where those channels are, and the volume of water
    necessary to water those channels.
    Q In the E.A. study, you -- in developing your
    curves, you used a utilization curve; is that correct,
    based on visual observations?
    A I used both. I used a utilization curve and a
    preference curve.
    Q But you said the state of the stream, we'll call
    it, the state of the stream that you evaluated in your
    study, was a state that had very little depth to it; is
    that correct? It was mainly riffles, fast, high
    velocity water?
    A I don't know if I would classify it as high
    velocity of water, but certainly shallow water. Rush
    Creek is a shallow, riffle dominated stream, riffle
    run, rock garden. It is not dominated by deep water.
    Deep water is very infrequent, at least it was in 1987.
    Q Do you have an opinion that that was the state of
    the stream prior to diversions by the L.A. Department
    of Water and Power?
    A I've heard that there were not a lot of pools,
    based on Eldon Vestal's testimony, but I haven't -- I
    have no other information other than that.
    Q You've stated in your testimony that the
    productivity of brown trout in Rush Creek is comparable
    to other Owens Basin streams; is that correct?
    A Well, the population level and the biomass levels
    seem to be comparable.
    Q So that would kind of dispute Dr. Chapman's
    suggestion that Rush Creek in particular was not
```

 comparable to other Owens River streams?
    ```
    comparable to other Owens River streams?
    A In what sense?
    A In what sense?
    Q In producing brown trout.
    Q In producing brown trout.
    A I'm -- I did not hear Dr. Chapman say that.
    A I'm -- I did not hear Dr. Chapman say that.
    Q Well, it's in his testimony.
    Q Well, it's in his testimony.
    A Okay.
    A Okay.
    Q In developing these curves, and you had -- in your
    Q In developing these curves, and you had -- in your
    testimony you had a lot of experience working in the
    testimony you had a lot of experience working in the
    hydrofield in a lot of streams on the east side of the
    hydrofield in a lot of streams on the east side of the
    Sierras.
    Sierras.
            Does Rush Creek, the state of the stream that you
            Does Rush Creek, the state of the stream that you
    studied, is it typical of those other kinds of streams,
    studied, is it typical of those other kinds of streams,
    in other words, not having a lot of depth?
    in other words, not having a lot of depth?
    A No. I would say it's atypical.
    A No. I would say it's atypical.
    Q Atypical stream.
    Q Atypical stream.
    A Compared to the other streams that I looked at.
    A Compared to the other streams that I looked at.
    Most of the other streams that I worked on in the
    Most of the other streams that I worked on in the
    eastern Sierra Nevada are a little higher gradient.
    eastern Sierra Nevada are a little higher gradient.
    They're very similar to that upper canyon region.
    They're very similar to that upper canyon region.
    That's what I'm talking about: Upper Rush Creek, Upper
```

 That's what I'm talking about: Upper Rush Creek, Upper
    ```
```

Lee Vining Creek, Mill Creek, Bishop Creek and Misty
Green (phonetic) Creek. They all more resemble that
upper reach.
Q But in developing the utilization curve, if -- are
brown trout, adult brown trout, territorial?
0064
A Yes.
Q So if there's not a lot of -- and we -- you
testified earlier that given cafeteria-style choices,
brown trout will choose deeper water?
A Well, I'm not sure that I -- if they're given a
complete array of all depths?
Q Yes. In the stream. If they had -- in a sense,
you had a stream that had a multiple or a complex
habitat forms, which include different velocities and
different water depths, based on your knowledge of
brown trout, they would be found in the more deeper
water?
A I'm not sure I could say that. I don't know
exactly what I would expect if they had a
cafeteria-style choice of water depth.
Are you suggesting that if the deepest water were Ô

```
```

would all be in
18 ten feet deep water?
Q No. What I'm suggesting is that you're saying
they didn't have much of a cafeteria-style choice in
Rush Creek where you found them; is that correct?
A Rush Creek is dominated by shallow water.
Q But you found brown trout and other eastern Sierra
streams that their comparable to, but yet those streams
probably had a larger choice of habitat types than Rush
0065
Creek had?
A I haven't done snorkeling studies in other streams
in the eastern Sierra Nevada.
Q What preference curves did you use for those IFIM
studies?
A I used the curves of Smith and Acitunal
(phonetic).
Q So if the Rush Creek at the present condition was
atypical of eastern Sierra streams, because of likely
changes --
A Well, I -- sorry. Go ahead.
Q Wouldn't it seem better to use the Smith and
Acitunal (phonetic) curves, as kind of a composite of
what -- if you had those kinds of habitat choices for
those fish?
A You're saying if Rush Creek is atypical?
Q Well, you said Rush Creek -- you have said Rush
Creek is atypical of eastern Sierra streams.
A Well, now, wait a minute. I didn't say that. I
said Rush Creek is atypical of the streams that I've
worked on. I'm talking about the reaches that I've
worked on.
Q But you've stated you had raw experience on many
of the streams that are either in the Mono Basin or
nearby in the Owens River system; is that correct?
0066
A Yes, experience doing instream flow studies.
A Right.
Q And so my question is if the stream, at least the
conditions that you observed in 1987, were atypical of
streams that you had familiarity with, but yet you
chose to use utilization curves based on the conditions
at the time, it seems to me those utilization curves
would be atypical as well.
A No. I wouldn't agree with that. Those curves
reflect the conditions in Rush Creek and are more
suitable, I think, for use in the IFIM than curves
taken from other streams that don't resemble Rush
Creek.
Q But if you would -- utilization of the fish in
that stream at that particular time would be using the
only -- only the amount of water that they had
available for the type of habitat they had available,
which is shallow, fast running water? That was your
testimony, wasn't it?
A Right. But Rush Creek is always going to have
that.
Q So you're saying Rush Creek is not going to have

```
```

deep water habitat then?
A In its present condition. Well, things are

```

01 changing in Rush Creek, as I think has been pointed out before.

But the flows -- if we go back to 1987, when these snorkeling studies were conducted, Rush Creek was then, and is to a large degree now, dominated by runs, riffles and rock gardens, shallow water. And that -those were the circumstances under which data were collected, both by E.A. and by the Beak consultants. Q What I'm asking you as a professional biologist, you assumed that those conditions are going to remain that way?
A Well, I'm not an effluvial-geomorphologist, but I've heard testimony that things will change in Rush Creek gradually, and there's also been some changes as part of the restoration program.
Q But Dr. Beschta talked about changes that were going to occur. ô
the
19
amounts of flow that are necessary to cause these
20
natural evolution of deep water pools and other types
21 of habitat that will be possibly preferrable to brown \(\quad\) trout?
improvement; is that correct?


0071
\begin{tabular}{ll}
\hline 01 & Would you get additional habitat? \\
02 & A At the flow that I'm recommending? \\
03 & Q Um-hum. \\
04 & A It depends -- you will in some cases, and you will \\
05 & not in other cases, depending on what happens to the \\
06 & main stem of the stream. If the main stem of the \\
07 & stream -- \\
08 & Q Is protected okay? You have -- again, you have \\
09 & protective flows. \\
10 & A You would maintain the flow in the main stem of \\
11 & the stream, and then you would open up other areas with \\
12 & additional flow. \\
13 & Q With additional flow -- provide 20 to 30 minimum \\
14 & flows that you have been suggesting. \\
15 & A For the main stem. \\
16 & Q The main stem would get whatever regime is -- that \\
17 & the Board deems is protected. And you rewater the side \\
18 & stems with 20 to 30 One two, three braided streams. \\
19 & Would you get additional habitat? \\
20 & A You absolutely would. If you kept the flow in the \\
21 & main stem, if you didn't take flow out of the main \\
22 & stem, if you used additional flows to rewater sections \\
23 & there's no question. Depending on how you create the \\
24 & side channels, what their depth and velocities \\
25 & characteristics are. I'm talking about the weighted \\
\hline 01 & usable area perspective, of course. Yes, if you kept \\
02 & the flows constant in the main stem that I'm
\end{tabular}
```

 Board members? Mr. Brown? Mr. Stubchaer? Questions?
 Questions? I've got one.
 CROSS-EXAMINATION BY THE BOARD
 Q BY HEARING OFFICER DEL PIERO: In the area where
 there's a losing channel, you indicated that you
 recommended 20 to 30 cfs release from the Mono gate.
 You also indicated, I think, in response to questions
 from Mr. Canaday, that 20 to 30 cfs would not be
 sustained at the mouth of Rush Creek because of losses.
 A That's right.
 Q You also indicated that those losses were taken
 into consideration in the analysis done by Dr. Beschta;
 is that correct?
 A No. What I indicated was those losses of stream
 flow were taken into account in the IFIM studies
 performed by E.A. and by me.
 So in other words, there was knowledge of what the
 flows were further down the river, and the weighted
 usable area was calculated for the entire river. It
 0073
 was based on weighted usable area at one flow near the
 top of the river and the weighted usable area based on
 a lower flow in a lower part of the stream.
 Q Did you include losses due to the percolation in
 that analysis?
 A It would. Yes.
 Q Dr. Beschta told me that he hadn't, in terms of
 his calculations on riparian -- on riparian vegetation
 and the relationship to groundwater in that corridor.
 A The losses, I think, that we took into account,
 definitely incorporated percolation. They were based
 on actual flow measurements at different points in the
 river.
 Q But one of the factors in the calculation was loss
 to percolation?
 A Lost water, whether it's percolation,
 evapotranspiration or evaporation.
 Q I'm asking very specifically on the issue of loss
 due to percolation into the groundwater. Was that one ô
    ```

Evapotranspiration is not something I'm particularly concerned about. It doesn't amount to anything. The loss in terms of percolation in the groundwater and the dewatered channel where there's significant amount of alluvial soils and no water can

0074
be very significant.
        That's the question I'm asking you, and I'd like
    an answer.
A The analysis did not have a variable in it that
    said this is loss of water due to percolation. And
    that may have been associated with different
    groundwater levels, saturation of the soil levels. The
    analysis that was done by E.A. simply evaluated changes
    in flow from the ditch down to the lowest transect,
    based on the flow measures that had been taken on all
    the transects down the stream. Now, that's all we
    did. We didn't have a variable in the model that said
```

 1 3 \text { this is -- this is loss due to percolation. Is that}
 14 clear?
 15 Q You calculated -- okay. You knew what was in the
1 6 stream channel at the beginning, and what was in it at
1 7 the end, and at various points along the stream channel?
A That's correct.
HEARING OFFICER DEL PIERO: Yes, Mr. Brown?
Q BY MR. BROWN: With a 20 cfs release, how much of
that makes it to the lake?
A The measurements that I took led to about 11 cfs
entering the lake.
HEARING OFFICER DEL PIERO: Ladies and Gentlemen,
we're going to take a break. And then, Mr. Birmingham,
you're back on again. Redirect?
MR. BIRMINGHAM: Yes, sir.
HEARING OFFICER DEL PIERO: Good.
(Whereupon a recess was taken at this time.)
HEARING OFFICER DEL PIERO: Ladies and Gentlemen,
if you would be good enough to take your seats.
Mr. Birmingham?
MR. BIRMINGHAM: Thank you, Mr. Del Piero.
REDIRECT EXAMINATION BY MR. BIRMINGHAM
Q First, Mr. Hanson, I'd like to ask you just a few
questions that relate to some of the questions asked of
you by staff and by the hearing officer. Also, I think
these questions relate to questions asked by other
members of the Board.
You indicated that Rush Creek was a losing stream
in response to a question asked of you, I believe by
Mr. Canaday. Is that correct?
A Yes, I said that.
Q Now, that was based upon your study that was
conducted in 1987?
A Yes.
Q In 1987, isn't it correct that the Department of
Water and Power was appropriating the entire flow of
Walker and Parker Creek?
A Yes, that's correct.
Q I'd ask you to assume, hypothetically, that the
flows of Walker and Parker Creek were flowing past
DWP's diversion facilities unimpeded, and that there
are no other diversions of those streams below DWP's
diversions facilities.
Would your answer about whether Rush Creek is a
gaining or losing stream be the same?
A I would consider it probably at that point a
gaining stream. I don't know the exact flows that
would enter it, but I would think by the time we hit
those streams, we would more than supply the water that
was lost up to that point in time.
Q This morning Mr. Roos-Collins asked you a question
about table 3A-3 from Volume One of the Draft
Environmental Impact Report.
Do you recall those questions?
A Yes, I do recall those questions.
Q And I believe he asked you if it wasn't correct
that you were recommending flows that were present --
that were present in the stream 100 percent of the

```
ô
\begin{tabular}{ll}
22 & A Yes. \\
23 & Q I'd like to show -- show you again table \(3 A-3\) and \\
24 & refer you to that portion of the table that refers to
\end{tabular}
    22 A Yes.
    Q I'd like to show -- show you again table 3A-3 and
    Rush Creek.

0077
\begin{tabular}{ll}
\hline 01 & What is your understanding of that table? \\
02 & A My understanding of this table is that it was \\
03 & based on flow duration analyses that were performed by \\
04 & Beak as part of the Fish and Game studies. \\
05 & Q And your minimum flow recommendation of 20 to 30 \\
06 & cfs when compared to that table simply means that there \\
07 & is always water in the stream that would be available \\
08 & to meet your minimum flow recommendation; isn't that \\
09 & correct? \\
10 & A That's correct. \\
11 & Q And that for a majority of the months, there is \\
12 & additional water in the stream above that required to \\
13 & maintain fish in good condition? \\
14 & A That's what the table shows, yes. I might add \\
15 & that in remembering how -- if I'm correct in this, how \\
16 & these data were generated, the analysis that I reviewed \\
17 & in the Beak report flow duration analysis and data \\
18 & presented there, were for flows in the creek that \\
19 & were -- are associated with the operation of a southern \\
20 & Cal Edison hydroelectric project up river of Lower Rush \\
21 & Creek. And so there is some level of management of \\
22 & stream flows out of the three reservoirs that are \\
23 & regulated by southern Cal Edison. \\
24 & Q Mr. Roos-Collins asked you other questions related \\
25 & to the IFIM that you prepared, and the model that
\end{tabular}
```

 _0078
    ```
    served as the basis of the IFIM.
            I believe that's PHABSIM; is that correct?
    A That is correct.
    Q Now, we've heard testimony about the PHABSIM model
    and other models, and we've heard testimony to the
    effect that there are certain assumptions that underlie
    models.
            Have you heard some of that testimony?
    A Yes.
    Q Now, is it correct that one of the assumptions
    that underlies the IFIM methodology or approach is that
    additional habitat will result in additional fish?
    A That is the general assumption. Although as I've
        stated also earlier, there is debate as to whether
        that's valid, that there is a one-to-one correlation
        between habitat and fish population response, either
        biomass or numbers.
        Q Well, in your opinion, does additional discharge
        necessarily mean that there will be additional fish in
        the stream?
        A Additional flow? Simply additional flow?
        Q Yes.
        A No.
        Q Would you explain why not?
        A If you at least agree that there's a correlation
                            0079
    01 between weighted usable area and fish population
    02 response, that there are some flows that are higher
```

 than other flows where weighted usable area will
 decline as a result of water that's too swift, mostly,
 and that certainly isn't -- that goes against what you
 said in that you would expect the fish population to
 respond negatively at these higher flows, rather than
 positively.
 Q I'm left with the impression from your testimony
 that in your opinion there are factors other than flow
 that relate to the number of fish that exist in the
 stream; is that correct?
 A Yes. Well, flow influences quite a few things in
 the stream, but there are other factors other than
 weighted usable area that influence the fishery in the
 stream.
 Q So creating additional weighted usable area is not
 necessarily going to result in additional fish in the
 stream?
 A Not if there are other limiting factors,
 certainly.Ô
 \1ù,ù,ÚÚİ,
Cahill asked you questions about
the predominant depth of Rush Creek at 19 cfs.
Can you tell me what does the term "predominant
depth" mean?
A Well, in the way in which I was describing it,
it's basically the peak of the frequency distribution.
That is, if you were to randomly put down a yardstick
in a stream, it's the depth that you would most often
measure with your yardstick.
Q And in response to a question by Ms. Cahill, you
said that at 19 cfs the predominant depth in Rush Creek
is 0.4 feet; is that correct?
A That's right.
Q Does that mean that there is no water in Rush
Creek that is deeper than 0.4 feet, at a flow of 19
cfs?
A No. That certainly doesn't mean that. There are
other deeper waters throughout the stream. Quite a
few, perhaps. It's just -- that predominant depth
notion is simply a frequency distribution notion. It
really doesn't tell you how much deeper water there is.
It's relative numbers, but not how much deeper water
there may be in other parts of the stream.
Q In your direct testimony, and in response to some
questions that were asked of you on cross-examination,
you stated that according to population studies
conducted by E.A. Sciences, Engineering and Technology
in Rush Creek, the population of adult brown trout in
Rush Creek was comparable to the population in
comparable eastern Sierra streams; is that correct?
A Yes, that's what I said.
Q Now, were those studies conducted when the minimum
flows in Rush Creek were 19 cfs?
A Yes.
Q So do we understand, then, that -- a minimum flow
of 19 cfs was capable of maintaining a population of
brown trout in Rush Creek that was comparable to
populations of brown trout in comparable eastern Sierra

```
```

streams?
A That's what the data indicates.
Q There were also questions of you yesterday by Ms.
Cahill that related to the E.A. version of the
hydraulic simulation model that was used in connection
with preparation of L.A.D.W.P, Exhibit 15.
Do you recall that question?
A Yes --
Q And she asked you to compare that with the
hydraulic simulation model that was used by Beak in
connection with the instream -- instream flow
incremental methodology study prepared on behalf of the
Department of Fish and Game.
Do you recall that question?
A Yes.
Q Has the E.A. version of the hydraulic simulation
0082
model been reviewed by any regulatory agencies?
A It's been reviewed on two occasions. Initially,
when I first developed it, it was reviewed by the U.S.
Fish and Wildlife Service, the developers of the
earlier version of the model, or I should say the
developers of the PHABSIM model that was commonly used.
I corresponded with Bob Millhouse, the
hydrologist with the U.S. Fish and Wildlife Service,
and had him compare model output from the E.A. model to
output from the PHABSIM model. He concluded in a
letter to me, I think around 1981, that while there was
some differences in some calculations, the models were
essentially the same.
I've also had a review of the model with the
California Department of Fish and Game. And the result
of that comparative analysis was a letter of approval
for the use of the model.
Q There have been numerous questions of you about
the recommendations that you made on page 21 of LA DWP
Exhibit 15 concerning the creation of additional pool
habitat in Rush Creek.
Would you please explain why you made the
additional pool habitat
be created in Rush Creek?
A The reasoning behind that, I think, as I stated

```
ô
                                    0083
01 previously, was looking at the results of the weighted
02 usable area curves and the dynamics of Rush Creek.
03 There was this balancing of depth and velocity that I
04 was noticing that as flows increased and depths got
05 better for the fish, the velocities tended to become
06 less suitable for the fish. And so there was these

17 A Well, deeper and lower velocity. Generally, by 18 deepening the water in a pool circumstance, the 19 velocity will slow down.
20 Q Now, is it your understanding that since 1987 the 21 condition of Rush Creek has changed?

A There have been changes, yes.
Q Is it correct that since 1987 the rye -- grazing has been removed from Rush Creek, and that as a result there has been a resurgence of riparian vegetation?

0084
```

 A I have seen that, yes.
 Q And is it correct that because of flows in excess
 of those that you're recommending as a minimum, there
 have been the natural creation of pools?
 A Yes. I've seen some of that starting to form.
 Q And would the natural creation of deeper habitat
 with lower velocities accomplish what you were
 recommending on page 21 of LA DWP Exhibit 15?
 A Yes. Whether it would occur naturally or
 artificially would accomplish the objectives of my
 recommendation.
 Q Now, Miss Cahill asked you a question about your
 IFIM study, LA DWP Exhibit 15, and whether or not you
 included transects outside of the Mono gate return
 ditch. Do you recall that question?
 A Yes.
 Q And you -- I believe you indicated that you would
 not include the transects from the Mono gate return
 ditch.
 A Well, in the curve that was shown on, I believe it
 was Figure 1 -- let's see what figure was it? Figure 2
 of my testimony, that curve was generated from the
 transects outside of the Mono gate return ditch.
 Q And why did you exclude transects from the Mono
 gate return ditch?
    ```
    A Partly because there was essentially zero coverage
    in the Mono gate return ditch. And that since my
    analysis was based simply on depth and velocity, it
    would inaccurately represent the amount of -- or the
    value of the habitat in that reach.
            Essentially, I think, the value of the Mono Gate
        One reach, even though the depths and the velocities
        are very good, and its condition in 1987 would provide
        poor habitat for fish, because of the essentially lack
        of cover.
        Q Essentially, you thought that there would be few
        fish in the Mono gate return ditch; is that right?
        A Well, based on my observations of few fish.
        Q I'd like to show you a table -- I'm sorry. It's
        table 24 from Department of Fish and Game Exhibit 52.
            And if table four is -- 24 is correctly
        identified, it's a table of fish collected by
        electrofishing in Lower Rush Creek, Mono County,
        California, from August 4 through August 24, 1987. Is
        that correct?
        A That's what it says. Yes.
        Q Now, there is a reach on -- in table 24 that's
        identified as reach one, and can you tell us in August
ô
```

7 how many brown trout were collected in reach
25 one of Lower Rush Creek?
A Eight fish.
Rush Creek in August of 1987 as a result of the
electrofishing survey conducted on behalf of the
Department of Fish and Game?
A 4,055.
Q If I told you that reach one was the Mono gate
return ditch, would that be consistent with your view
in 1987 that reach one would have provided poor
habitat, and as a result, few fish?
A Yes, absolutely.
Q Finally, there were some questions about your
recommendation of a constant flow that did not take
into account dry, normal, and wet water years.
Do you recall those questions?
A Yes, I do.
Q Is that issue addressed in your direct written
testimony?
A No. I do not propose flows for different water
years.
Q Did you, in your written testimony, did you
explain why not? And -- there's -- I'll eliminate the
suspense. What I'd like to do is refer you to page 46
of your written testimony. And there, isn't it correct --
HEARING OFFICER DEL PIERO: You're allowed to ask
0087
him questions about his recollection of it also.
Q I don't think he understood my question. But --
on page 46, and on to page 47, isn't it correct that
you explained why you think in Rush Creek the
Department of Fish and Game's recommendation of
different flows for dry, normal and wet years is
inappropriate?
A Yes.
Q I have no further questions.
HEARING OFFICER DEL PIERO: Thank you.
Ms. Cahill?
RECROSS-EXAMINATION BY MS. CAHILL
Q Good morning.
A Good morning.
Q There has been some discussion today of the fact
that there may have been some pools created, or pools
that are in the process of being created, in Lower Rush
Creek at present. Is that your understanding?
A Yes.
Q What I'd like to do is explore a bit what your
suitability curves would tell us about the suitability
of pools that may be forming in Lower Rush Creek.
If you would tell me again, if you used your
utilization curve, and you had water three feet deep,
what would be the suitability of that water for brown
0088
trout according to that curve?
A It would be zero.
Q And if you used your preference curve starting at
approximately 3.2 feet, would the suitability be zero?
A For the adult or --

```
```

 Q Yes, for the adults.
 A Yes.
 Q I'd like to perhaps oversimplify, but can you
 correct me -- I'd like to get the basic concept of how
 these curves are input into the model.
 In the IFIM, you define a cell in the stream
 that's basically a column of water in the stream. Is
 that correct?
 A Yes, but it represents an area, even though it's
 in a column.
 Q Right. So at some point your model is going to
 take the width of that cell, multiply it by the length
 of the cell, and then you will multiply by your
 suitability criteria for depth and the suitability
 criteria for velocity; is that correct?
 A That's right.
 Q So let's assume a one foot width. Let's assume a
 one foot length, and let's -- at this point assume a
 one foot velocity. ô
 on your suitability curve, if we had water

```
```

that was approximately 1.6 feet deep, would your
suitability be one? That would be maximum, wouldn't
it?
A Close, yeah.
Q Okay. And that would be one. So in that case,
you would have -- this product would equal weighted
usable area.
MR. BIRMINGHAM: For the record can we ask that
the product be identified?
MS. CAHILL: The product is the width times the
length times the criteria for depth times the criteria
for velocity, equals weighted usable area. Roughly.
So in the example, in my first example, you would
have -- that cell would add one square foot -- this
would be one square foot --
HEARING OFFICER DEL PIERO: That's cubic foot.
MS. CAHILL: No, it's actually square feet. This
is foot and this is foot and these are not. Your
weighted usable area will always be in square feet.
HEARING OFFICER DEL PIERO: Yeah.
MR. BIRMINGHAM: Can we ask that Miss Cahill be
sworn?
MS. CAHILL: That's true.
Is that true, Mr. Hanson?
MR. HANSON: Yes.

```
    HEARING OFFICE DEL PIERO: This is instructional
    for the hearing officer. We have the two engineers
    here who don't need this.
    Q BY MS. CAHILL: Let's assume that we now have a one
    foot by one foot cell. And in this case, the water
    depth is three feet deep. Let's say four feet deep.
    Okay?
            Now when the depth is four feet, according to your
        criteria, the suitability factor is then zero; is that
        right?
    A That's right.
    Q And then let's assume, again, a one-foot
    velocity. Now, in that case, our weighted usable area
```

goes to zero, and this, then, this transect -- this
cell would add nothing at all to the weighted usable
area. It would effectively say, fish won't use this
water. Is that basically right?
A Yes.
Q So when we saw Mr. Tillimans wading in some water
that appeared to be waist high, unless he was on his
knees, under your curves, that water would -- because
of the zero depth suitability, would be found to be not
suitable for adult brown trout; is that right?
A Yes. I would point out that at deeper depths the
same thing would happen with the Cal Fish and Game
0091
curves.
MS. CAHILL: Well, actually, could someone bring
me the Smith and Acitunal (phonetic)? No, actually not
that. All right. That will do.
Let me mark this as Exhibit DFG next in order,
which I think is number 135.
(Exhibit Number 135 was
marked for identification.)
Q BY MS. CAHILL: Yes. Now, Smith and Acitunal
(phonetic) is the DFG curve. Does it in fact go to
zero any time before seven feet?
A I was referring to the juvenile curves that were
developed in the site-specific study.
Q I've been talking about adult brown trout. So if
we were talking about adult brown trout, would DFG find
a suitability of one in that 3-foot deep water?
A Yes, it would.
Q And it would find a suitability of one even in
the -- a suitability of one even in six-foot deep
water?
A Yes.
Q And now that I have this up here, are you familiar
with Rally?
A Yes.
Q And would Rally find a suitability of one or of
Ô
0 1
zero at three feet and four feet?
A It would be one.
Q And are you familiar also with Bovee (phonetic)
78?
A Yes.
Q And does Bovee (phonetic) find a suitability of
one or of zero at three feet, four feet, five feet and
six feet?
A Yes.
MR. BIRMINGHAM: Excuse me. Mr. Del Piero, I
wonder if Miss Cahill could be asked if she's
representing to the Board that the graphs that she is
showing the witness actually depict the suitability
curves from the reports that she's identifying?
MS. CAHILL: I would be happy to make that
representation. And I will be willing to have one of
my experts who prepared the graphs for me testify to
that --
HEARING OFFICER DEL PIERO: I appreciate you
indicating that. And I also have to assume that

```
```

Mr. Hanson wouldn't be acknowledging that he recognizes
them if he didn't recognize them.
MR. HANSON: I recognize them from the
literature.
HEARING OFFICER DEL PIERO: Okay.
MS. CAHILL: And this last one is your preference
curve. This one is perhaps a bit fair, because I think
your table two was developed with your utilization
curve.
But if instead we had your utilization curve, it
also would come to zero at somewhere around three feet;
is that right?
I'd like to mark this at least for identification.
HEARING OFFICER DEL PIERO: The plastic
transparencies --
MS. CAHILL: Yes.
HEARING OFFICER DEL PIERO: -- or the calculations
in back?
MS. CAHILL: Well, the calculation, I have already
numbered DFG 135. I'd like to do this as well. And it
would be, then, DFG 136.
HEARING OFFICER DEL PIERO: Any objections?
MR. BIRMINGHAM: Maybe we label it DFG 136, A, B,
C and D?
HEARING OFFICER DEL PIERO: Is that acceptable to
you?
MS. CAHILL: Fine.
HEARING OFFICER DEL PIERO: Any other objections?
Hearing none, so ordered.
MR. DODGE: I have no objection, but I'd like a

```
        0094
    copy of them.
                    (Exhibits Number DFG 136
                        \(A, B, C\), and \(D\)
                        were marked for
                            identification.)
    MR. HANSON: One thing I'd like to point out --
    HEARING OFFICER DEL PIERO: Of the calculation,
Mr. Dodge, or of the transparency?
    MR. DODGE: The transparency.
    MS. CAHILL: We will provide them.
    HEARING OFFICER DEL PIERO: Thank you.
    MR. HANSON: One thing I'd like to point out about
    the different curves that you've shown, at least
    comparing the DFG curves and the E.A. curves, is that
    while there are different depth suitabilities,
    particularly at the higher depths, you've got to bear
    in mind the sensitivity of the models to the amount of
    deep water in the stream.
            The pool habitats in Rush Creek comprise a very
    small fraction of the total length of Rush Creek. Rush
    Creek again is dominated by depth and velocities. And
    while these suitability criteria are different and
    would produce different results, as you indicated in
    your calculations, what's important to consider is the
    change in the weighted usable area curves, which will
\(00950 \hat{}\)
based on the small
\begin{tabular}{|c|c|}
\hline 02 & fraction of deep water in the stream. The shallow \\
\hline 3 & water that exists throughout all the other transects \\
\hline 04 & will dominate the weighted usable area curves. \\
\hline 05 & And furthermore, as I stated, I think, yesterday, \\
\hline 06 & you have to consider the sensitivity of the policy \\
\hline 07 & decisions made regarding the results of the curves to \\
\hline 08 & these suitability criteria which is the next step. \\
\hline 09 & Q BY MS. CAHILL: Okay. But in fact, I think we looked \\
\hline 10 & at the transect for the return ditch the other day, and \\
\hline 11 & it would, at higher flows, have water of these depths; \\
\hline 12 & is that right? \\
\hline 13 & A Yes \\
\hline 14 & Q And you indicated you eliminated the return ditch \\
\hline 15 & because it lacked cover; is that your testimony? \\
\hline 16 & A Absolutely. \\
\hline 17 & Q So in other words, you didn't take cover into \\
\hline 18 & account for the stretches on which you -- which you \\
\hline 19 & relied \\
\hline 20 & A Right. \\
\hline 21 & Q -- in developing your Figure 2, but you eliminated \\
\hline 22 & the return ditch because of lack of cover? \\
\hline 23 & A There is cover in Rush Creek in a good many \\
\hline 24 & places. There are the problems that I described as to \\
\hline 25 & how you deal with cover along the transects. It's \\
\hline & \\
\hline & problematic, and it doesn't change substantially \\
\hline 02 & shape of the curve. It changes the total amount of \\
\hline 03 & habitat that's being predicted. \\
\hline 04 & But if you were to assume that there is adequate \\
\hline 05 & cover and there are problems with many of the things \\
\hline 06 & that I describe -- one other I didn't mention is what's \\
\hline 07 & cover to different life stages. There's different \\
\hline 08 & rocks and sticks and other things that present \\
\hline 09 & different amounts of cover of different value to \\
\hline 10 & different life stages which is not incorporated into \\
\hline 11 & the analysis when you use cover. \\
\hline 12 & Q Was there any aquatic vegetation in the return \\
\hline 13 & ditch in the year you did your study? \\
\hline 14 & A There was some. There's more now than there was \\
\hline 15 & then. \\
\hline 16 & Q Yeah. I believe you've recommended that there be \\
\hline 17 & some riparian -- it might be beneficial to have \\
\hline 18 & riparian vegetation along the return ditch? \\
\hline 19 & A Yes. \\
\hline 20 & Q Do you know whether Los Angeles Department of \\
\hline 21 & Water and Power has, in fact, cleared the ditch from \\
\hline 22 & time to time? \\
\hline 23 & A I don't know whether they have. \\
\hline 24 & Q Assuming that aquatic plants and riparian \\
\hline 25 & vegetation were allowed to grow so that there were -0097 \\
\hline 01 & there was cover as well as the correct depths and \\
\hline 02 & velocities, that could constitute good habitat for \\
\hline 03 & adult brown trout, couldn't it? \\
\hline 04 & A It would improve it, but I think the better thing \\
\hline 05 & to do, the thing that really is lacking in the return \\
\hline 06 & ditch, is instream cover in the form of boulders and \\
\hline 07 & hiding places within the stream where fish can dart to \\
\hline 08 & when surprised. I think that's the primary reason why \\
\hline 09 & there's darn few fish, as I said yesterday, in the \\
\hline
\end{tabular}
```

 return ditch than in 1987.
 I don't know the numbers of fish in the return
 ditch now. But if you're going make the return ditch a
 valuable stream segment, you've got to put in more than
 just riparian vegetation. You can't just have the dirt
 bottom that it has with some aquatic vegetation growing
 from it to provide a stream in good condition as
 Mr. Canaday was talking about.
 That is a stream -- not a stream, really, but it's
 a man-made channel that has a good depth and velocity
 profile, but it doesn't have the other components to
 make it a stream in good condition for fish to inhabit.
 Q I don't mean to cut you off, but I'm very aware
 that my time is running out. Let me ask you with
 regard to Lee Vining Creek, is it your testimony that
 your recommendations are based on the Department of
    ```
        0098
    Fish and Game IFIM, and that you've basically selected
ô
cent of maximum habitat?
    03 A Yeah. That was the method I was applying.
    04 Q And so if I were to now show you the table from
    05 DFG's final report that corresponds to the table 18 in
25 A I believe that's 95 cfs.
01

\section*{13 BY MS}
14 w
```

15 of 65,000 square feet?

```
16 A That's correct.
\begin{tabular}{|c|c|}
\hline 17 & Q And what would 80 percent of that be? \\
\hline 18 & A 50. \\
\hline 19 & Q Okay. And so then if we come down and find the \\
\hline 20 & flow that corresponds to 50,000 square feet, is that \\
\hline 21 & flow going to be approximately 30 to 35 cfs? \\
\hline 22 & A Judging from this, just eyeballing, something like \\
\hline 2 & that \\
\hline 24 & Q So, in fact, if you have presented a \\
\hline 25 & recommendation of 15 and 25 in Lee Vining Creek, based \\
\hline 01 & on DFG's study, and the idea that it would be 80 \\
\hline 02 & percent of maximum habitat -- in fact if you were \\
\hline 03 & basing it on the final report, your recommendation \\
\hline 04 & would be different, wouldn't it? \\
\hline 05 & A I don't know if \(I\) want to make a recommendation \\
\hline 06 & right now. I haven't reviewed the data that carefully, \\
\hline 07 & and I don't necessarily make a recommendation on the \\
\hline 08 & results of a single life stage. But I would say that \\
\hline 09 & there might be a probability that the upper range would \\
\hline 10 & be somewhat higher. \\
\hline 11 & Q And in fact that curve is still rising even as it \\
\hline 12 & goes off the chart at 95 cfs, isn't it? \\
\hline 13 & A Could be. \\
\hline 14 & Q So that it's possible we're not at the maximum? \\
\hline 15 & A It could be right at its peak as well. \\
\hline 16 & Q Let me ask you very briefly, do you have any \\
\hline 17 & recommendations with regard to the flows in Walker and \\
\hline 18 & Parker Creek? \\
\hline 19 & A No, I do not. \\
\hline 20 & Q Do you understand that DWP's management plan \\
\hline 21 & proposes not to divert water from those creeks? \\
\hline 22 & A Yes. \\
\hline 23 & Q And do you assume that if that water is left in \\
\hline 24 & the streams, it will maintain fish in good condition \\
\hline 25 & those streams? \\
\hline & 0101 \\
\hline 02 & usable area versus discharge curves.ô \\
\hline \(\backslash 1\) ù & u, ÚÚ \\
\hline 04 & management plan brochure. Did you say you were not \\
\hline 05 & familiar with this? \\
\hline 06 & A I said I had not worked in the development of that \\
\hline 07 & plan. \\
\hline 08 & Q If I were to tell you that it says that, "minimum \\
\hline 09 & stream flow releases from Lee Vining Creek will range \\
\hline 10 & from 16 cubic feet per second to 74 cubic feet -- in \\
\hline 11 & the winter -- to 74 cubic feet per second in June," do \\
\hline 12 & you know where those minimum recommendations would have \\
\hline 13 & come from? \\
\hline 14 & A No. \\
\hline 15 & Q And one final question with regard to Walker and \\
\hline 16 & Parker, at the time you did your study, a Mono gate \\
\hline 17 & release of 20 cfs would result in approximately what \\
\hline 18 & flow at the county road? \\
\hline 19 & A At the time of our studies? \\
\hline 20 & Q Yes \\
\hline 21 & A In 1987? \\
\hline 22 & Q Yes \\
\hline 23 & A About 11 cfs. \\
\hline 24 & Q Okay. And if you were to assume that Walker and \\
\hline
\end{tabular}
```

 on all of the other streams?
 Q Yeah. How did you determine they were comparable?
 A Just -- just by evaluating the scatter of points
 in a plot. I think Dr. Morhardt will discuss that in
 more detail.
 Q Isn't Lee Vining -- excuse me, Rush Creek in its
 natural condition larger than almost any of the streams
 included in that study?
 A I don't know.
 Q Didn't the study, in fact, leave out most of the
 large streams such as the Owens River?
 A I'd ask you to refer to Dr. Morhardt with that
 question.
 Q Thank you.
 MS. CAHILL: I have no more questions.
 HEARING OFFICER DEL PIERO: Thank you very much.
 MS. CAHILL: I would move that we admit DFG 135,
 and I will do the other when I have my witness to
 identify it.
 HEARING OFFICER DEL PIERO: Unless I hear
 objections to that, that will be so ordered.
 (Exhibit Number DFG 135
 was received into evidence.)
 MR. FRINK: Miss Cahill? In order that our record
 is clear, on Exhibit 136, I would request that you mark
    ```
                            0104
    01 each one of the sheets with an \(A, B, C\), or \(D\), as is
    02 appropriate. And in order that it isn't overly
    03 burdensome, \(I\) wonder if we could have a paper version
ô
t exhibit?
    05 MS. CAHILL: Yes, I will provide that. Thank you.
```

 MR. FRINK: Thank you.
 HEARING OFFICER DEL PIERO: Mr. Dodge?
 MS. CAHILL: In fact, I have copies of those, now,
 I can provide. They're not exactly each separate sheet
on the same scale, but if you don't need to overlay
it --
MR. FRINK: Fine.
MS. CAHILL: I'll give them to you now, and to the
other parties.
HEARING OFFICER DEL PIERO: Thank you.
Mr. Dodge?
MR. DODGE: Yes --
HEARING OFFICER DEL PIERO: Where did you send
Mr. Flinn?
MR. DODGE: Back to work.
MR. BIRMINGHAM: Another admission. When
Mr. Flinn is here, he's not working. Thank you.
MR. DODGE: I've had Mr. Hanson's declaration of
September of }1989\mathrm{ reproduced overnight. And we've
marked it as National Audubon Society Exhibit 220. And
0105
I've asked Mr. Payne (phonetic) to distribute copies to
everyone. And I would move the admission of Exhibit
220.
HEARING OFFICER DEL PIERO: Any objections?
MR. BIRMINGHAM: I need to see a copy of 220.
HEARING OFFICER DEL PIERO: Any objections?
MR. BIRMINGHAM: No objections.
HEARING OFFICER DEL PIERO: So ordered.
(NAS Exhibit Number 220
was received into evidence.)
RECROSS-EXAMINATION BY MR. DODGE
Q Now, Mr. Hanson, we were talking about this
Exhibit 220 yesterday, and we talked about the gradual
increase in adult habitat in Rush Creek up to 150 to
189 cfs.
Let me ask you, sir, was that -- was that estimate
that you made in this declaration, was that based on
your utilization curve or your preference curve?
A I was thinking about that last night. I really
don't know the answer to that question. I'm not even
sure it was based on those data at all, or it may have
been based on the generic curves from the Smith and
Acitunal (phonetic) report. I really don't know. This
was done some time ago, and I really can't recall.
Q So it may have been based on Smith and Acitunal
0106
(phonetic)?
A Could have been.
Q And that would be a preference curve, then, right?
A Yes. I'm just not certain of the data on --
Q Smith and Acitunal (phonetic) curve is the same
curve that's being used in the proposed flow regime
being recommended by the Department of Fish and Game,
correct?
A Well, for all life stages but juvenile.
Q So in 1989 you were using the Smith and Acitunal
(phonetic) curves for Rush Creek?
A I'm not saying that. I don't know what curve I
was using.

```
```

 Q You might have been.
 A I could have.
 MR. BIRMINGHAM: Excuse me. I wonder if
 Mr. Hanson could be given an opportunity to read the
 entire declaration before these questions go on.
 HEARING OFFICER DEL PIERO: Mr. Hanson, do you
 need to read --
 MR. HANSON: I haven't read the entire thing.
 I've only focused on --
 HEARING OFFICER DEL PIERO: Stop the clock. Go
 ahead and read it.
 MR. HANSON: Maybe the answer's in there. Yes, in
 fact, the answer is right here.
 Q BY MR. DODGE: What's the answer, sir?
 A It's in paragraph three. They were based on the
 data collected by
 E.A.Ô
E.A. data. Was that
0 6 ~ u t i l i z a t i o n ~ d a t a ~ o r ~ p r e f e r e n c e ~ d a t a ?
0 7 ~ A ~ I ~ t h i n k ~ i t ~ w o u l d ~ h a v e ~ b e e n ~ u t i l i z a t i o n ~ d a t a , ~ b u t
0 8 ~ I ' m ~ n o t ~ c e r t a i n ~ o f ~ t h a t . ~
0 9 ~ Q ~ B u t ~ i f ~ y o u ~ l o o k ~ a t ~ F i g u r e ~ 2 , ~ o v e r ~ t h e r e ~ r i g h t
behind you, sir, if you'd look behind you. Figure 2,
which you've submitted with your testimony today,
that's based on utilization data; is that correct?
A Yes. I can't tell you why the differences are
there. I have some ideas why there are different
results here than there. This was a preliminary
evaluation. And for one thing, I think at that time we
didn't have knowledge or had not worked in for the
analysis, the losing nature of the stream that I
discussed previously in my testimony. That is one of
the factors that we built into the model, I think, near
the end after this declaration was provided.
All I can say is this was a preliminary evaluation
and was based on data that I had and an analysis that I
performed at the time, which was preliminary. And I
had, subsequent to that time, developed a more final
0108
analysis.
Q Let me talk to you about this 80 percent of
weighted usable area goal as it relates to limiting
factors.
Now, when Mr. Roos-Collins asked you questions
about limiting factors, you talked about various
factors that have an impact on fish, and you mentioned
temperature and food.
Would you agree with me that enough refuge
habitat -- by refuge, I mean refuge from high velocity,
can also be a limiting factor?
A You mean an inadequate amount of refuge habitat?
Q Correct.
A Yes. I would say, theoretically, that could be a
limiting factor.
Q And could another limiting factor be an absence of
suitable over wintering habitat?
A Yes.
Q And you told us in response to Mr. Roos-Collins'
question, that today, habitat is a limiting factor in

```
\begin{tabular}{|c|c|}
\hline 21 & Rush Creek. Do you recall that testimony? \\
\hline 22 & A Well, yes. What I was stating there was that the \\
\hline 23 & assumption behind my testimony is that weighted usable \\
\hline 24 & area can be a limiting factor. And I utilize the \\
\hline 25 & weighted usable area curves to insure that it isn't a 0109 \\
\hline 01 & limiting \\
\hline 0 & I can't say with absolute certainty that those \\
\hline 0 & weighted usable area calculations that were made by the \\
\hline 0 & model, either out of E.A. or Fish and Game's analysis, \\
\hline 05 & will, in fact, limit the fishery, but that's the \\
\hline 06 & assumption behind the PHABSIM model \\
\hline 0 & Q Now, let me ask you about this 80 percent factor. \\
\hline 08 & Let me ask you to assume that our goal in this \\
\hline 09 & proceeding is the restoration of pre-diversion \\
\hline 10 & fisheries. All right? And let me ask you to assume, \\
\hline 1 & further, that the limiting factors in Rush Creek today \\
\hline 12 & are different than they were pre-diversion. \\
\hline 13 & Hypothetically, for example, that -- a limiting \\
\hline 14 & factor today is lack of refuge habitat from high flows, \\
\hline 15 & and that that was not a limiting factor pre-diversion. \\
\hline 16 & Now, based on those assumptions, would you agree \\
\hline 17 & with me that we should restore the fishery in terms of \\
\hline 18 & limiting factors to it's pre-diversion condition before \\
\hline 19 & we applied your 80 percent rule? \\
\hline 20 & A Yes. If there are other limiting factors, outside \\
\hline 21 & of weighted usable area, say food, I think what you're \\
\hline 22 & saying is there may be some other limiting factor \\
\hline 23 & operating now that wasn't operating pre-diversion days, \\
\hline 24 & so let's say it's food. \\
\hline 25 & \begin{tabular}{l}
Q Let's say it's food, for example, hypothetically? \\
0110
\end{tabular} \\
\hline 0 & A Then would you want to eliminate that limiting \\
\hline 0 & factor. Yes. Well, I would say that, you know, it's \\
\hline 03 & not necessarily you go for one after the other, or that \\
\hline 04 & one comes before the other. You would essentially want \\
\hline 05 & to try to, in a sense, optimize conditions for the \\
\hline & \\
\hline y by & eliminating that limiting factor, if it in \\
\hline 07 & fact is a food limitation, and at the same time, insure \\
\hline 08 & that your eliminating the possibility of weighted \\
\hline 09 & usable area then taking over as a limiting factor. But \\
\hline 10 & I wouldn't say that one comes before the other, \\
\hline 11 & necessarily. It's a combination, or let's say a \\
\hline 12 & simultaneous optimization of all factors. That's how I \\
\hline 13 & would approach it. \\
\hline 14 & Q But wouldn't it be correct that you would have to \\
\hline 15 & equalize the present situation with the pre-diversion \\
\hline 16 & situation before you applied your 80 percent test? \\
\hline 17 & A What you mean by equalize -- you mean the fishery \\
\hline 18 & numbers? \\
\hline 19 & Q The fishery habitat. The factors that limit \\
\hline 20 & fishery habitat. \\
\hline 21 & A You would want to equalize those \\
\hline 22 & Q If your goal is to restore historic conditions. \\
\hline 23 & A The same limiting factors that may have existed. \\
\hline 24 & Q Yes. \\
\hline 25 & A Or the lack of limiting factors \\
\hline
\end{tabular}

01 Q Right. You'd have to correct the present
02 condition in terms of the limiting factors before you
03 applied the 80 percent test?
04 A Well, again, I'm not sure whether I would do it as
05 a before or after. I would do it as a simultaneous.
06 I'm not sure why you think one needs to come before the
07 other, necessarily. I view it as a simultaneous
08
09
10 Qrocess. All right. Mr. Herrera asked you some questions
10 about substrate, and you testified that they were --
11
that substrate was critical to spawners and that -- but
12 you had not modeled that.
13
\begin{tabular}{|c|c|}
\hline 09 & A Yeah -- well, I don't know. I think they are. \\
\hline 10 & Q Now, in response to another question by \\
\hline 11 & Mr. Habitat -- Mr. Habitat -- Mr. Canaday about -- oh, \\
\hline 12 & I wrote it down right here, habitat. In response to \\
\hline 13 & another question by Mr. Canaday about keeping fish in \\
\hline 14 & good condition, and he asked you what the habitat \\
\hline 5 & components of that were, and you responded, "adequate \\
\hline 16 & weighted usable area, temperature, food and flushing." \\
\hline 17 & Would you -- would you add to that list the \\
\hline 18 & adequate spawning gravel? \\
\hline 19 & A Yes. \\
\hline 20 & Q Adequate over wintering habitat? \\
\hline 21 & A Um-hum. \\
\hline 22 & Q And adequate refuge from high flows? \\
\hline 23 & A Well, anyone of these variables could be a \\
\hline 24 & limiting factor. I don't know to what degree they \\
\hline 25 & operate on Rush Creek, at least all of them. \\
\hline 01 & Q Just a couple more questions, sir. In response to \\
\hline 02 & a question by Mr. Birmingham about the natural creation \\
\hline 03 & of pools, you said, quote, some are starting, if I \\
\hline 04 & wrote it down correctly. And then you went on to say \\
\hline 05 & that, "pools would be formed naturally." \\
\hline 06 & Would you agree with me in that this potentially \\
\hline 07 & could take hundreds of years? \\
\hline 08 & A Not necessarily. I think that it could occur more \\
\hline 09 & rapidly than that. \\
\hline 10 & Q Over what time frame? \\
\hline 11 & A I don't have an opinion. But it seems to me that \\
\hline 12 & 100 years is much more rapidly. I believe, if I recall \\
\hline 13 & Dr. Beschta's testimony, he said ten years. \\
\hline 14 & Q But this is not an area of your expertise, is it? \\
\hline 15 & A No. \\
\hline 16 & Q Finally, final question, Ms. Cahill -- Ms. Cahill \\
\hline 17 & drew on the Board there exhibit -- Fish and Game \\
\hline 18 & Exhibit 135, and the way she drew it at four-foot \\
\hline 19 & depth, that you had basically zero weighted usable \\
\hline 20 & area, correct? \\
\hline 21 & A Yes. \\
\hline 22 & Q And that's because under your curve, four-feet \\
\hline 23 & deep water has zero value for adult brown trout, \\
\hline 24 & correct? \\
\hline 25 & A That's correct. \\
\hline & 0115 \\
\hline 01 & Q Now, would you agree with me that that result, \\
\hline 02 & i.e., zero weighted usable area for four-foot deep \\
\hline 03 & water flowing at one feet per second is biologically \\
\hline 04 & unrealistic? \\
\hline 05 & A I would say that there could be fish in that \\
\hline 06 & depth, at that depth. There would be probably adult \\
\hline 07 & fish at that depth. I would also repeat the response \\
\hline 08 & that I made in regards to her comments relative to the \\
\hline 09 & sensitivity of model output and policy decisions. \\
\hline 10 & Q As a biological matter, simply as a biological \\
\hline 11 & matter, water four feet deep flowing at one foot per \\
\hline 12 & second is extremely good habitat for adult browns; \\
\hline 13 & isn't that true? \\
\hline 14 & A It's good habitat. \\
\hline 15 & Q No further questions, thank you. \\
\hline 16 & HEARING OFFICER DEL PIERO: Thank you very much. \\
\hline
\end{tabular}
```

 Mr. Roos-Collins?
 MR. ROOS-COLLINS: Mr. Del Piero, let me begin
 with a procedural request to you. Mr. Hanson's answer
 to one of Mr. Birmingham's questions prompted me to
 attempt to obtain documents that I think are relevant
 to Mr. Hanson's answer. I will be able to obtain
 those documents during the lunch recess.
 Could I reserve five minutes of time for direction
 to Mr. Hanson after lunch.
 0116
 HEARING OFFICER DEL PIERO: Mr. Hanson, are you --
 MR. HANSON: I'll be here.
 HEARING OFFICER DEL PIERO: Yes.
 MR. ROOS-COLLINS: Good. Thank you.
 RECROSS-EXAMINATION BY MR. ROOS-COLLINS
 Q Mr. Hanson, let's begin again with table 3A-3 from
 the draft Environmental Impact Report.
 f flow recommendation a monthly median flow?
 A No.
 Q Is it an instantaneous flow?
 A It's a constant flow for a month.
 Q So at any time, and on average, the flow would be
 fixed at some specified cubic foot per second?
 MR. BIRMINGHAM: Objection, compound.
 MR. ROOS-COLLINS: I withdraw the question.
 Q BY MR. ROOS-COLLINS: At any time the flow would be
 fixed at some specified cubic foot per second?
 A Yes.
 Q And on a monthly basis, as well, the flow would be
 that fixed cubic foot per second?
 A With the exception of any other flows necessary to
 perform other functions that have been described
 already in my testimony.
 Q Let's assume that the State Water Board adopted
 your flow recommendation for weighted usable area and
 did not supplement that recommendation with any other
 flows.
 Your flow recommendation for Rush Creek
 corresponds to the flow which was exceeded before
 diversions began nearly 100 percent of the time; is
 that correct?
 A Well -- based on these data here?
 Q Yes.
 A Before diversions began, was a circumstance in
 which there was control or regulation of flow
 associated with southern Cal Edison hydroelectric
 projects up river.
 Q I believe that table 3A-3 purports to estimate
 mean monthly flow in a natural setting.
 My question to you is: Does your recommendation
 for Rush Creek correspond to the flow that would have
 been exceeded nearly 100 percent of the time in a
 natural setting?
 A Yes. I think that's consistent with what I'm
 saying.
 Q The same question for Lee Vining Creek, again
 referring to table 3A-3. What does your flow
 recommendation most closely correspond to?
    ```
Ô
s you
\begin{tabular}{l}
24 \\
A The zero or the ten percent value, somewhere in \\
25 \\
there. \\
\hline 01
\end{tabular} Q In answer to questions by Mr. Dodge, you stated, I
```

 HEARING OFFICER DEL PIERO: Mr. Herrera?
 MR. HERRERA: Yes, I just have a couple of
 questions here regarding --
RECROSS-EXAMINATION BY THE STAFF
Q You indicated that you had done population
estimates or studies for a variety of hydroelectric
projects in the Owens Basin, Mono Basin. About how
many of those?
A Oh, a dozen to 20.
Q And were those population analysis based on brown
trout, rainbow trout, or --
A Mostly brown trout.
Q Mostly brown trout. Were any of these streams
heavily fished?
A Some were and some weren't.
Q Were they planted fish?
A Some were planted with rainbow.
Q With rainbows. Do you know if they planted any
brown trout?
A I don't think so.
Q Do you have knowledge if they do or do not?0121
A I don't have any specific knowledge. I believe
they don't plant brown trout in those streams.
Q Okay. Do you know whether or not the Department
of Fish and Game had planted Rush Creek prior to your
observations?
A I was never aware that it had occurred. I do not
think they did.
Q Did you talk to Fish and Game to ask them whether
they had or not?
A I did not specifically discuss it with Fish and
Game.
Q I have one other question regarding the Mono gate
return ditch. You had indicated here that there are --
there is more aquatic vegetation there today than there
was during your examination in 1987?
A I think that's my assessment. I've seen it
recently, and it appears to me that there's more
aquatic vegetation there today than there had been
previously in 1987.
Q Is that vegetation desirable for the fishery?
A It is, to some degree, I think it is.
Q Would you attribute that additional vegetation to
higher flows that are there today than were there in
1987?
A I'm not sure I would say that. I really don't
0122
know what factors dictate growth. I'm not -- again,
I'm not a specialist in aquatic vegetation.
Q Okay. That concludes my questions. Thank you.
HEARING OFFICER DEL PIERO: Mr. Canaday?
Q BY MR. CANADAY: When you developed your utilization
curves from observations in 1987 on Rush Creek, did you
observe many adult brown trout?
A Would you repeat the last part of that question?
Q Did you observe many adult brown trout?
ell, are you talking about E.A. Engineering?
11 Q Yes.

```
Ô
\begin{tabular}{|c|c|}
\hline 12 & A I can't tell you the exact number of brown trout, \\
\hline 13 & but there were enough brown trout observations taken to \\
\hline 14 & generate a curve. \\
\hline 15 & Q And I believe you stated earlier that the fish \\
\hline 16 & populations in a natural condition are very dynamic and \\
\hline 17 & change from year to year; is that correct? \\
\hline 18 & A Yeah. If I didn't say that, I believe it. \\
\hline 19 & Q Has E.A. been collecting more fisheries data on \\
\hline 20 & Rush Creek since 1987? \\
\hline 21 & A Well, E.A. has been involved in some \\
\hline 22 & electrofishing studies since 1987, yes. \\
\hline 23 & Q Have the relative numbers of adult fish, brown \\
\hline 24 & trout, increased? \\
\hline 25 & A I haven't looked that closely to say yes or no to \\
\hline & \\
\hline 02 & Q That's all I have. \\
\hline 03 & HEARING OFFICER DEL PIERO: Thank you very much. \\
\hline 04 & Anyone else? Board members? No questions? Thank you \\
\hline 05 & very much, Mr. Hanson. I appreciate all the time and \\
\hline 06 & effort you put in. We'll see you back after lunch. \\
\hline 07 & Mr. Roos-Collins, we're going to break right now \\
\hline 08 & for lunch. Ladies and Gentlemen, it's 20 to. Rather \\
\hline 09 & than starting again, I anticipate being back here right \\
\hline 10 & at 1:00 o'clock. Okay? Mr. Birmingham? \\
\hline 11 & MR. BIRMINGHAM: Mr. Del Piero, for purposes of \\
\hline 12 & time, both Dr. Hardy and Dr. Morhardt are here. \\
\hline 13 & They're our two remaining witnesses on fisheries. \\
\hline 14 & We'll put them on as a panel this afternoon, so we can \\
\hline 15 & hopefully conclude our fisheries testimony today. \\
\hline 16 & HEARING OFFICER DEL PIERO: Okay. You have an \\
\hline 17 & additional witness, also? \\
\hline 18 & MR. BIRMINGHAM: Mr. Tilliman is -- he skipped \\
\hline 19 & town. He's not here. But he'll be here this \\
\hline 20 & afternoon. \\
\hline 21 & HEARING OFFICER DEL PIERO: Let me ask you, \\
\hline 22 & Mr . Birmingham, is the nature and complexity of the \\
\hline 3 & testimony -- well, I've seen the nature and complexity \\
\hline 24 & of the written testimony. \\
\hline 25 & Do you -- well, perhaps the question is better put \\
\hline 0 & to Ms. Cahill and Mr. Dodge. Do you folks anticipate \\
\hline 02 & that the nature and complexity of the cross-examination \\
\hline 03 & of the two witnesses that Mr. Birmingham proposes to \\
\hline 04 & put on as a panel will be comparable to that of \\
\hline 05 & Mr. Hanson? \\
\hline 06 & MR. DODGE: I anticipate having a few questions of \\
\hline 07 & Mr. or Dr. Hardy. I don't know which it is. And I \\
\hline 08 & will have some questions of Dr. Morhardt. \\
\hline 09 & HEARING OFFICER DEL PIERO: Am I to assume from \\
\hline 10 & your statement that you -- when you say you will have a \\
\hline 11 & few questions -- \\
\hline 12 & MR. DODGE: I will say that I will have \\
\hline 13 & substantially fewer questions to either of those \\
\hline 14 & gentlemen than I had for Mr. Hanson. \\
\hline 15 & HEARING OFFICER DEL PIERO: Okay. Miss Cahill? \\
\hline 16 & MS. CAHILL: I will have considerable questions \\
\hline 17 & probably for Dr. Hardy, although we've already laid \\
\hline 18 & some of the ground work. We already know some of the \\
\hline 19 & basic concepts -- \\
\hline
\end{tabular}
```

HEARING OFFICER DEL PIERO: I'm just trying to figure out whether or not my expressed desire, and Mr. Birmingham's indication that we're going to be done with the fisheries witnesses today is, in fact, going to be correct,.
So -- we'll take a break now. We'll be back here 012501
promptly at 1:00 o'clock, and we'll start right then. Thank you.
(Whereupon the lunch recess was taken at this time.)
HEARING OFFICE DEL PIERO: Ladies and Gentlemen, this hearing will again come to order.
Mr. Birmingham, Mr. Dodge, Miss Cahill, I've given certain issues a tremendous amount of consideration during the two minutes or so I had while I was eating a burrito between the eighth floor of the Resources

And I've decided that we are not going to be

``` successful in getting all of the witnesses that \(I\) had hoped done today.
So it is my sense that you need to go back to Bishop and take your daughter with you, okay? MS. GOLDSMITH: Not that she's not welcome here.
HEARING OFFICER DEL PIERO: Not that she's not welcome. And I understand our staff had a wonderful time on the tour yesterday. I understand you had a pretty good time, too. But \(I\) think given the fact that it's starting to show some precipitation outside, and that tends to turn into snow on top of the summit, unless I hear any vehement objections from any of the counsel, which I probably won't pay any attention to 0126
anyway, I will -- I would suggest, sir, that we aren't going to take you up today. And we'll take you -- were you scheduled to go on with another witness at the same --
MR. CANADAY: We would -- Mr. Del Piero, we'd prefer that Mr. Tilliman was paneled with Dr. Gel (phonetic).
MR. BIRMINGHAM: That's acceptable.
HEARING OFFICER DEL PIERO: Fine. Have a safe trip. Okay. Where were we? We were here with Mr. Hanson.
Mr. Roos-Collins, you've got five minutes.
MR. ROOS-COLLINS: I have reserved time. RECROSS-EXAMINATION BY MR. ROOS-COLLING Q Mr. Hanson, let's return to table 3A-3. During The lunch break, Mr. Vorcter (phonetic), who is a very precise hydrologist and has been sworn in this proceeding, informed me that \(I\) was close, but not quite accurate in describing this.
He informed me that the table depicts flow above the points of diversion by LA DWP, taking into account regulation by upstream hydroelectric facilities.
With that understanding, would you still characterize your flow recommendation as being comparable to the zero percent exceedence level shown 0127
01 in that table for Rush Creek?
```

02	A Yes, I would say so.
03	Q And would you still characterize your flow
04	recommendation for Lee Vining Creek as being comparable
05	to the zero to ten percent exceedence levels shown in
06	that table?
07	$A \quad Y e s, ~ s i r$.
08	Q Thank you. Let me turn, in the few minutes that I
09	have, to your answer to Mr. Birmingham's question about
10	the review by the Fish and Wildlife Service and the
11	Department of Fish and Game of E.A.'s proprietary fish
12	flow model.
13	Do you recall Mr. Birmingham's question?
14	A Yes, I do.
15	Q And what was your answer?
16	A That the model has been viewed by two parties, the
17	U.S. Fish and Wildlife Service and the California
18	Department of Fish and Game.
19	And then -- the letter that I received from the
20	U.S. Fish and Wildlife Service indicated that while the
21	models were somewhat different, they were essentially
22	the same. Their predictions were somewhat different
23	for this test data set, essentially, they were the
24	same. The letter I received from Cal Fish and Game
25	evaluated the similarities of the model and proved the
01	use of the model.
02	Q You don't mean to imply, however, that the Fish
03	and Wildlife Service and the Department of Fish and
04	Game had accepted E.A.'s use of its model as accurate
05	or sufficient in all regulatory proceedings, do you?
06	A Yes, I view it to be that
07	Q I will show you now exhibits, which we will mark
08	in order, Cal-Trout 17 through 22.
09	For clarification, Exhibit 17 is a November 5th,
10	1993, letter from Mike Mines (phonetic) of the State
11	Water Board to the U.S. Fish and Wildlife Service
Ô	
ing	the Plavy River Project.
13	Cal-Trout Exhibit 18 is an October 22nd, 1993,
14	letter from Dale Pierce of Fish and Wildlife Service to
15	you at E.A., again regarding the Plavy river project.
16	Cal-Trout Exhibit 19 is a letter dated March 31st,
17	1993, from Dean Schumway (phonetic) Federal Energy
18	Regulatory Commission to John Mills, project manager
19	Plavy river project.
20	Cal-Trout Exhibit 20 is a January 19th, 1993,
21	letter from the Department of Fish and Game signed by
22	Mr. John Turner to the Federal Energy Regulatory
23	Commission. Let's stop there.
24	You understand that these documents concern E.A.'s
25	fish flow studies submitted as part of the application $\begin{array}{r}0129\end{array}$
01	for the Plavy river project to the Federal Energy
02	regulatory commission; is that correct?
03	A Yes.
04	Q Would you agree with me that these letters express
05	concerns about the habitat suitability criteria used by
06	E.A. in that study?
07	A I haven't read all these letters. So I can't
08	necessarily agree to that right now.

```
Q Let me have you turn to Cal-Trout Exhibit 18,
second paragraph?
A Now, which letter is that?
Q That's the October 22nd, 1993, letter from the
Fish and Wildlife Service to you.
A Which paragraph?
Q Second paragraph. "The service is not satisfied
with the habitat suitability curves for rainbow trout
that were developed by E.A."
    Have you received this letter?
    A I don't recognize the letter.
    Q Let me lay the foundation, Mr. Hanson, for
    Cal-Trout Exhibits 21 and 22. Cal-Trout Exhibit 21 is
    an August 31st, }1993\mathrm{ letter from Fred Worthley, that's
    W-O-R-T-H-L-E-Y, regional manager, region five,
    Department of Fish and Game, to the Southern California
    Edison Company concerning Bishop Creek.
```

 And Cal-Trout Exhibit 22 is a January -- excuse
 me, June 14th, 1993 letter from Dean Schumway
 (phonetic) to Southern California Edison, also
 regarding the Bishop Creek project.
 Are you familiar with these letters?
 A Yes, I think I recognize these letters.
Q Do these letters express concern about the habitat
suitability criteria used by E.A. in connection with
that project?
A Yes.
Q Thank you.
MR. ROOS-COLLINS: Mr. Del Piero, I would move for
admission of these exhibits at the proper time in the
presentation of our case.
HEARING OFFICER DEL PIERO: Fine.
MR. ROOS-COLLINS: Thank you very much.
HEARING OFFICER DEL PIERO: Thank you very much.
Mr. Hanson, we thank you for your presence and for your
cooperation. Okay. Mr. Birmingham, your next
witnesses.
MR. BIRMINGHAM: Certainly. At this time the
Department of Water and Power would like to call
Dr. Thomas Hardy and Dr. Emil Morhardt.
HEARING OFFICER DEL PIERO: Dr. Hardy, you've been
sworn already?0131
DR. HARDY: Yes, sir.
HEARING OFFICER DEL PIERO: Dr. Morhardt, have you
been sworn?
DR. MORHARDT: Yes, I have.
HEARING OFFICER DEL PIERO: Okay. Good afternoon,
gentlemen.
MR. BIRMINGHAM: I'd like to start, if I may, with
Dr. Hardy.
DIRECT EXAMINATION BY MR. BIRMINGHAM
Q BY MR. BIRMINGHAM: Dr. Hardy, LA DWP Exhibit 17 has
been identified as the direct testimony of
Dr. Thomas B Hardy. Ô
Have you had an opportunity to review LA DWP
14 Exhibit 17?
15 A Yes, sir.
16 Q And is LA DWP Exhibit 17 a copy of the direct

17	testimony that you prepared in connection with these
18	proceedings?
19	A Yes, sir.
20	Q LA DWP Exhibit 18 is a document identified as
21	background and experience of T. Hardy Ph.D. Is LA DWP
22	Exhibit 18 a document which contains a description of
23	your education experience and professional
24	qualifications?
25	A Yes, sir
01	Q Would you please briefly summarize the testimony
02	that is contained in LA DWP Exhibit 17?
03	A That's my qualifications?
04	Q No, that's your written testimony.
05	A The testimony that I presented before this Board
06	concerned issues that I was asked to evaluate regarding
07	the technical instream flow reports on Rush and Lee
08	Vining Creek.
09	Q Excuse me, Dr. Hardy, perhaps before you do that,
10	you could give us a brief summary of your
11	qualifications and background?
12	A I received my Bachelor of Science in secondary
13	education in biology in 1977 from the University of
14	Nevada at Las Vegas. I received a second Bachelor's of
15	Science in 1978 in biology from the University of
16	Nevada at Las Vegas.
17	I received a Master's of Science in biology,
18	aquatic ecology, from the Nevada-Las Vegas in 1982.
19	And I received my Ph.D. in 1988 from Utah State
20	University in civil and environmental engineering.
21	I am presently a faculty member in the Department
22	of Civil and Environmental Engineering. I am the
23	director of the Institute for Natural Systems
24	Engineering. And as part of the College of
25	Engineering, I have a joint appointment with the Utah
01	Water Research Laboratory at Utah State University, and
02	an adjunct position with the Watershed Science Unit in
03	the College of Natural Resources at Utah State
04	University.
05	For the past 15 years, I have focused my research,
06	scientist and engineering expertise on the development
07	and testing and application of multi-disciplinary
08	assessment methods, primarily in aquatic ecosystems,
09	and in particular in looking at the effects of altered
10	flow regimes on the aquatic environment. The
11	particular instream flow incremental methodology
12	experience includes modeling in over a thousand streams
13	and rivers in Canada and the United States.
14	I have performed all aspects of study design, and
15	in particular the modeling aspects of these studies, as
16	well as determination of impacts and instream flows.
17	At present, for the last three years or more, I
18	have been the lead instructor for these computer
19	modeling classes, and teach them for the Fish and
20	Wildlife Service across the country, and have
21	personally developed the existing lecture material that
22	is used to teach those classes.
23	In addition, I have done considerable model
24	development in cooperation with the U.S. Fish and

25	Wildife Service on the PHABSIM models. I have been
01	the principal author of the user interface that is
02	currently part of that package. I wrote the curve
03	development package that comes with the PHABSIM
04	computer models and have many versions of my own
05	routines that are used within PHABSIM.
06	I am a certified fishery scientist, in addition to
07	my experience in open channel flow modeling and
08	engineering.
09	In terms of my specific experience in the Mono
10	Basin, I have worked on Bishop Creek and reviewed
11	several reports relative to that for the southern
12	California Edison Company. I, as part of that work,
13	reviewed the suitability curve report, which I'm sure I
Ô	
e getting questions on relative to Smith and	
15	Acitunal (phonetic) eastern Sierra trout streams.
16	And I have looked at the instream flow reports for
17	Lee Vining Creek, Rush Creek, both for California
18	Department of Fish and Game and E.A. Engineering. I
19	have also reviewed the material on Walker and Parker
20	creeks, as well as both the middle and Upper Owens
21	River
22	I'd like to go on now and summarize my oral
23	testimony for the Board and proceed with that. I was
24	asked to provide an independent review of the instream
25	flow technical reports that were utilized in the Mono 0135
01	Basin EIR, and evaluate the Mono Basin EIR in terms of
02	their use and interpretation of those data within the
03	Mono Basin EIR.
04	These reviews, as I've indicated, included Rush
05	Creek, Lee Vining Creek, Walker and Parker creeks, and
06	the middle and Upper Owens River. My review elements
07	from my experience included the factors of study
08	design, the habitat mapping and reach delineations, the
09	number and selection of cross-sections, field data
10	collection methods, hydraulic modeling, which included
11	both water surface and velocity predictions and
12	calibrations.
13	It included the development and selection of the
1	suitability index curves, the actual habitat modeling
15	that was conducted, the voracity and consistency of the
16	interpretation of the study results and their
17	integration into the formulation of instream flow
18	recommendations, and then how those recommendations
19	matched up with those being presented in the Mono Basin
20	EIR.
21	Based on that review, I have broken this oral
22	testimony into, in essence, two phases. One concerns
23	what I will call broad issues or concerns that cut
24	across most, if not all, of the instream flow
25	assessments that are discussed, and in particular how 0136
01	they were utilized in the Mono Basin EIR.
02	I think the Board is aware of, but needs to be
03	reminded that there are some apple and oranges type
04	comparisons in assessing what alter flow regimes or
05	instream flows may be, depending upon which creek is

under discussion.
The Upper Owens River basically looked at a
percent of optimal habitat beginning at 80 percent, and then considered other geomorphical or sediment movement conditions in the channel to come up with the flow recommendations.

In Rush Creek, the flows were associated with the median habitat duration analyses. Lee Vining Creek, in the version of that report that I reviewed initially, based the flow recommendations on simple flow duration analyses. While Walker and Parker Creek utilized a modified Tenant Method.

The ability to distinguish between different lake levels and how that relates to flows and impacts becomes difficult when there are different methods used to assess what those impacts are on a stream by stream basis.

I also have taken issue with the utilization of the eastern Sierra trout stream curves of Smith and Acitunal (phonetic) and have made the statement that 0137
they are, generally, biologically irrational for many of those relationships, and when compared with site-specific preference curves developed on-site, in comparison to these regional curves, I believe are symptomatic of the problems of using preference curves at all in instream flow studies.

And if I might have my first two figures, please?
And Mr. Del Piero, may I approach the charts?
HEARING OFFICER DEL PIERO: Certainly.
DR. HARDY: Thank you, sir.
HEARING OFFICER DEL PIERO: Actually, can you approach them, Dr. Hardy? If you take the microphone -- can you -- I think you need to come around the table to get the cord to
work. ô
all, I'd like to point out
for the benefit of the Board and other members of legal counsel, in Figure D-2, this is the Brown Trout Juvenile Overhead and Object Cover Curve for Water Depths. And this is Figure A-2 from the volume two of the California Fish and Game report on Rush Creek.

The point I want to notice here is, in terms of the biological irrationality of the curves, are things in the Smith and Acitunal (phonetic) curves that commonly for the water depth, and many times for the velocity, show bimobile characteristics that, in my 0138
opinion, are an artifact of the sampling procedure, the frequency distributions of those observed data, and the problems of attempting to correct or availability to develop preference curves, which is not recommended at this time when we teach the courses.

And I would question as a biologist familiar with brown trout, and in this case, for brown trout juvenile, that you see effects like this that make biological sense, that a brown trout juvenile at approximately 1.5 feet of water, shows a preference of one, a declining preference out to two feet of depth, and then an increase in preference out in the range to
wens River. In that report, the statement was made
18 that the velocity adjustment factors, which are an
19 indication of either the voracity of the water surface

20	modeling and/or the validity of the velocity
21	predictions, that one expects from theory a certain
22	pattern or relationship. And I will be happy to
23	demonstrate that for the Board if it is so desired.
24	In that report, the relationship was indicated as
25	being within valid ranges and following generally
O	1
02	each at the two-calibration discharges that I reviewed,
03	over 40 percent of those relationships did not follow
04	what I considered to be expected relationships based on
5	hydraulic theory.
06	My concern there is if that many cross-sections do
07	not follow what is anticipated, then the sensitivity of
8	the PHABSIM model to those types of errors, especially
9	in conjunction with these regional curves, which may
10	have, in fact, no applicability to site-specific
11	conditions, that I would caution the Board on reliance
12	of the weighted usable area results without recognizing
13	the high degree of uncertainty from those study
14	result
15	Moving on to Lee Vining Creek, again,
6	site-specific issues of the suitability curves, I also
17	am concerned that the range of simulations indicated in
18	that report follow what is referred to as the rule of
9	thumb of 0.4 to 2.5 , the range of simulated
20	discharges.
21	That rule of thumb is intended, in teaching the
22	urse, to have students evaluate what might be
23	appropriate ranges of simulations. It is not
4	necessarily the proper range of simulation.
25	Oftentimes, those ranges can be much smaller.
	0142
01	The fact that all of the cross-section information
02	over the measured discharges were all set at . 4 and 2.5
3	seems difficult for me to believe, and I am suspect of
04	those ranges. And I raise this technical issue because
05	some of the flow recommendations occur at the higher
6	ranges of those simulated discharges.
07	I also have questions relative to the aggregation
08	of those results out in the range of 70 to 100 cfs as
09	indicated in the report. In that report for at least
10	reach six, the highest simulated discharge of 70 cfs,
11	which is 2.5 times higher than the measured discharge,
12	is considerably less than 95 or 100 cfs.
3	Reach five has a range of simulated discharge less
4	than 95 or 100 cfs , and yet aggregate results for all
15	of the reaches extend those results past even the 2.5
6	rule of thumb. And the result may, in fact, not be
17	valid.
18	also have the opinion from review of not only
9	the instream flow reports, but other ancillary data
20	presented in these proceedings, that the instream flow
21	recommendations, at least in the original Lee Vining
22	report, essentially ignore the habitat based analysis
23	and other study results.
24	I also have the opinion upon review of the
25	information that the instream flow recommendations on a
	nthly basis are too high as indicated by Californi

```
    Fish and Game recommendations, and that flows more in
    the 30 to 40 cfs range may be appropriate, or as low as
    2 0 ~ t o ~ 3 0 ~ b a s e d ~ o n ~ t h e ~ d r a f t ~ L e e ~ V i n i n g ~ r e p o r t . ~
            Moving on finally to the site-specific issues with
    the Rush Creek instream flow analysis, again, I draw
    the Board's attention to the questions of the validity
    of application of the regional suitability curves to
    site-specific conditions in Rush Creek.
            I did take a small issue with the temperature
    simulations in Rush Creek where shading was ignored,
    although it has been articulated as representing an
    important element of water quality modeling.
            I have extensive experience in water quality
    modeling, and I feel that the failure to include cover
    and using the hottest day of the entire period of
O
inferences potentially
    about near stress conditions for temperatures would not
    be born out if cover were included in that analysis.
            I also believe that the instream flow
    recommendations established using the median habitat
    values from the time series analysis are flawed. I do
    not necessarily agree with the inference to the
    citation of Bovee (phonetic) that this represents a
    biologically justifiable criteria.0144
01 I believe that flows over the ranges of 60 cfs, which were indicated to cause sediment distribution problems, are not mitigated by artificial gravel recruitment, and therefore flows going as high as 100, because they were the limit of the simulations, is not a valid or logical reason.
And I believe that the flow recommendations that I would develop if asked for Rush Creek may, in fact, be lower than those specified by California Fish and Game, and may clearly be in the 20 to 30 cfs range.
This concludes my summary of the oral testimony.
HEARING OFFICER DEL PIERO: Thank you very much, Dr. Hardy. And Dr. Morhardt?
Q BY MR. BIRMINGHAM: Dr. Morhardt, LA DWP Exhibit 19 is a document identified as the direct testimony of Dr. J. Emil Morhardt.
Have you reviewed that document?
A BY DR. MORHARDT: Yes, I have.
Q And is it the testimony that you drafted for these proceedings?
A Yes, it is.
Q LA DWP Exhibit 20 is a document entitled professional profile of J. Emil Morhardt, Ph.D.
Is that a document which contains a description of your education, experience and qualifications?
A Yes.
Q And LA DWP Exhibit 21 is a document entitled, Effects of Flow Regulation and Diversion on Standing Crops of Brown Trout in Eastern California, J.E. Morhardt, et al, 1991.
Is LA DWP Exhibit 21 a document which you were responsible for drafting?
A Yes, it is.
```

```
valley.ô
Q Would you please summarize the written testimony
    19 that has been submitted as LA DWP Exhibit 19?
    20 A Yes. I have much less complicated testimony than
    21 Dr. Hardy, I'm happy to say. I'd like -- before I
        22 start, I'd like to point out two errors in the
23 testimony.
    Q Please.
    A One of them is the -- on Figure Number 1,
```

01

Q And is it a document on which you relied in forming opinions that you expressed in your testimony LA DWP Exhibit 19?
A Yes, in part.
Q Would you please summarize your education, experience, and qualifications?
A Yes. I have a Bachelor of Arts degree from Pomona College in Clairemont, California, in zoology. And while I was doing that, I was also working for two summers for the California Department of Fish and Game in Bishop doing stream surveys and lake surveys on trout.

Following that, I went to Rice University and received a Doctorate in physiology, ecology, and biochemistry. After that I joined the biology faculty at Washington University, where I taught vertebrate ecology, vertebrate physiology and comparative and

> _0146
general physiology for eight years. Then I became director of biological services, and then chief scientist for Henningson, Durham and Richardson in Santa Barbara, California.

And in 1978, I joined E.A. Engineering, Science and Technology, then known as Ecological Analysts in Lafayette, California.

I have -- since that time, I've continued to be with E.A., and I've worked on trout populations on many of the streams on the east side of the Sierra for Southern California Edison Company, for Inyo County, for the Department of Water and Power, and for the Electric Power Research Institute.

I've also worked on trout populations on the west side of the Sierra, and I've done a lot of work on salmon populations in various tributaries of the central
underneath the figure, and in fact, I'd just as soon you put it up. Put Figure 1 up now.

Underneath the figure, the flow is designated as CMS, cubic meters per second. That's a typographical error. The -- all of the other figures are -- do express flow in CMS, but in this case, the flow is expressed in cubic feet per second.

I'd also like to point out that one of the
references I cited in my testimony needs to be deleted. That's the third reference entitled, "Fish Population Response Model for IFIM Unpublished Research". It's not cited in the text, and it's not relied upon.

What I would like to do today is talk briefly about the relationships between flow and trout
16
populations in east side Sierra streams. The eastern
17
side of the Sierra provides a unique natural laboratory
18
for a retrospective look at how various kinds of
19 physical variables, including flow, influence trout

```
of the points is almost twice that for all of the other
```

of the points is almost twice that for all of the other
streams that are depicted here.
streams that are depicted here.
I've also done similar analysis for -- I'll put
I've also done similar analysis for -- I'll put
Figure 2 up as an example. But I won't, I think, put
all the rest of them up. All of these show essentially
the same thing: Basically, no relationship between
flow and fish populations.
In addition to this sampling of fish greater than
200 millimeters, I've also looked at the total number
of fish per meter, the total number of fish per
cubic -- pardon me, for square meter of surface area,
and the -- the grams of fish per meter. I think I
misspoke myself. The grams of fish per square meter as
well.
And in these subsequent nine figures, which I
don't intend to go through one by one, I've also
plotted those three variables against the mean annual
flow, the average June flow, which is the high flow in
these streams, and the average January flow, which
characteristically is the low flow in these streams.
And in addition, I've broken out streams that are
diverted with triangles. These are streams like Rush
Creek and streams like Bishop Creek, which have
diversions in them for either hydroelectric or for
potable water reasons.
I've also broken out regulated streams, streams
like Upper Bishop Creek, wherein all of the flow is
released downstream, but it's released down in a
0151
regulated way. And then I've also included undiverted
natural flows.
And the result of all of these analyses is that
there is fundamentally no relationship at all between
flow and the numbers of fish in these streams.
That concludes my summary of my oral testimony.
MR. BIRMINGHAM: Thank you.
HEARING OFFICER DEL PIERO: Thank you,
Mr. Birmingham. Ms. Cahill?
MS. CAHILL: Good afternoon. Would somebody bring
those charts and just set them down?
CROSS-EXAMINATION BY MS. CAHILL
Q Good afternoon, Dr. Hardy. I think
you just indicated that you participated in
approximately a thousand IFIM studies over the course
of your career. Is that right?
A BY DR. HARDY: No. I would say that I have analyzed
data from over a thousand streams in the course of my
career.
Q And that career has spanned what kind of a time
period?
A The first time I got involved with actual instream
flow assessments was during the first year of my second
bachelors in late 1977 and early 1978.
Q And so when your testimony said you "conducted
streams and rivers," you certainly didn't mean to
indicate that you conducted in the sense of doing the
fieldwork, is that right?

```
```

 A I would guess that in terms of actually being
 involved in the collection of field data, it's probably
 35 different river systems with multiple reaches on
 river systems.
 Q And with regard to your experience in the Mono
 Lake Basin, I think you mentioned Bishop Creek. Is
 Bishop Creek in the Mono Basin?
 A Actually, I believe it's in the Owens drainage.
 Q Do you have any experience on streams in the Mono
 Basin prior to this?
 A In terms of on-site work?
 Q Yes, on-site or review.
 A In a technical sense, no.
 Q Thank you. And did I understand you to say that
 you reviewed the E.A. IFIM on Rush Creek as well as the
 Ô
ment of Fish and Game IFIM?
21 A Yes, ma'am.
Q And would some of the criticisms you have made in
your written testimony of the DFG study apply as well
to the E.A. study?
A In which regard?
0153
Q Any of the criticisms you've made of DFG, use of
curves, biologically unrealistic curves, any criticisms
you made of Fish and Game?
A Well, I believe that the reliance upon the Smith
and Acitunal (phonetic) curves, yes. I believe that in
a fundamental sense, the nature of the utilization
curves in E.A., I think that testimony has been talked
about briefly today, I would take issue with.
Q And would you concur, then, that the E.A.
utilization curve is biologically unrealistic at least
with regard to depths for adult brown trout?
A In a very strict technical sense, yes, but if -- I
could make a statement regarding that, I think that --
Q I'd actually -- go ahead.
A Prefer not? That's fine. We're missing an
important point about all of this.
Q Let me -- I hate to take this microphone again,
but it's what we're going to have to do. Before I go
let me ask you --
MR. BIRMINGHAM: Before we go on, may I ask that
the reporter mark that last question and answer?
Q BY MS. CAHILL: I understand that you do have some
criticisms of using regional suitability curves.
In the event that a researcher were unable to
collect site-specific data, what would you recommend
0154
that they do?
A Well, I think that the current policy of the Fish
and Wildlife Service, and what I teach in the instream
flow course is, is that if one were to rely first of
all upon preference curves that you simply should not.
Secondly, that if you're going to use regional
curves, and they are utilization curves that you should
go through a formal verification or validation with
some observations on-site.
And in the absence of that, that all parties
involved in the process sit down with species experts

```
```

and come up with a mutually agreeable set of criteria.
Q You've several times said what you currently
teach. At the time these studies were done, the Beak
study was done in 1987, was it the standard practice to
develop and use preference curves?
A I don't believe that it was ever a policy of the
U.S. Fish and Wildlife Service that they explicitly
recommended that you use preference curves in IFIM
studies.
Q I didn't ask policy; I asked practice. Was it
standard practice?
A No. It was not. Not nationwide.
Q In California?
I wouldn't be able to speak to that directly.
Q You -- are you aware that when Beak went to do its
study after a period of time at which the flows had
been 19 cfs in Rush Creek, they were unable to observe
sufficient adult brown trout to develop a site-specific
criteria?
A I believe it is my understanding from reading the
report that they considered they had insufficient
observations to develop a preference curve from their
direct observations.
Q And are you -- do you recall from the E.A. report
that they had insufficient observations in their first
season, so that they had to make additional
observations in a second season in order to observe
enough adult brown trout to prepare their utilization
curves?
A I believe that could be true.
Q Now, with regard to the shapes of the curves, most
of the curves you showed us were, I believe, juvenile
preference curves.
A The explicit figures are all juvenile curves in my
Q Okay. And for example you were concerned about a
bimodal -- bimodal distribution. You thought that was
biologically unrealistic.
A From my experience in observing brown trout
0156
juveniles in the bioenergetic studies on drift feeding
station locations, I don't believe that that curve
represents a biologically justifiable curve. It is an
artifact of the mathematical or algorithmic procedure
used to develop the preference curve.
Q And I believe the one we just looked at was based
on velocity. Now, this is from LA DWP Exhibit 15.
This is E.A.'s curve, also for juveniles, also for
velocity. It was Figure 4 in the E.A. report. And is
there -- and the dotted line represents juveniles.
Is there also a bimodal distribution in the E.A.
report?
A What does the dotted line represent on that
figure?
Q The dotted line represents a utilization curve for
juvenile brown trout on velocity. It would be, I
think, the most comparable to the -- the Smith and
Acitunal (phonetic) that we have just reviewed. And is
it not also bimodal?

```
\begin{tabular}{|c|c|}
\hline 20 & A The utilization cu \\
\hline 21 & Q Yes. \\
\hline 22 & A Yes \\
\hline 23 & Q And even the preference curve, less so, but still \\
\hline 24 & some. Isn't there also a dip, can you not see that? \\
\hline 25 & And you can feel free to approach, if you'd like. \\
\hline 01 & \\
\hline 02 & stepfunction in E.A.'s curve? \\
\hline 03 & A I would represent it as a somewhat bimodal \\
\hline 04 & distribution. \\
\hline 05 & Q And do you believe that a bimodality such as this \\
\hline 06 & would have a greater impact or a lesser impact than a \\
\hline 07 & complete change from entirely suitable to not at all \\
\hline 08 & suitable? \\
\hline 09 & A I was hoping you'd ask me that. Could I have \\
\hline 10 & Figure 2 from Dr. Hanson's testimony? \\
\hline 11 & MS. CAHILL: I think we should stop the clock. \\
\hline 12 & have a feeling -- \\
\hline 13 & HEARING OFFICER DEL PIERO: Mr. Stubchaer is real \\
\hline 14 & quick with the clock. \\
\hline 15 & MR. STUBCHAER: It doesn't matter. You all get \\
\hline 16 & extra time any way. \\
\hline 17 & DR. HARDY: Mr. Del Piero, I'm interested in \\
\hline 18 & getting out of here as soon as I can, so I hope to be \\
\hline 19 & brief. \\
\hline 20 & MS. CAHILL: I'm really tempted at this point to \\
\hline 21 & withdraw the question. \\
\hline 22 & MR. BIRMINGHAM: I'll just ask the reporter to \\
\hline 23 & mark it. \\
\hline 24 & DR. HARDY: There has been considerable discussion \\
\hline 25 & about the utilization curves versus the preference \\
\hline 01 & \(\qquad\) 0158 curves. And the differences between the curves \\
\hline 02 & developed in Beak and the curves developed by -- or the \\
\hline 03 & application in this particular instance of the regional \\
\hline 04 & curves, and the issue of what deeper water is, and what \\
\hline 05 & impact having -- as the question was posed, zero \\
\hline 06 & utilization out here past approximately two and a half \\
\hline 07 & or three feet. \\
\hline 08 & And the point I tried to make earlier, I said I \\
\hline 09 & would probably come back to is: If you look at the \\
\hline 10 & comparison of the results in Figure 2, which shows the \\
\hline 11 & weighted usable area result derived from the \\
\hline 12 & application of the preference curve in this instance \\
\hline 13 & only, and then the results generated from the \\
\hline 14 & utilization curve showing no preference and therefore \\
\hline 15 & no weighted usable area, vis-a-vis in pools or deeper \\
\hline 16 & water habitat, the end result of the decision making \\
\hline 17 & process of those results is that it flows approximately \\
\hline 18 & above 40 cfs, as indicated in Figure 2 of Dr. Hanson's \\
\hline 19 & report. \\
\hline 20 & The incremental change in magnitude or the \\
\hline 21 & functional relationship between those two curves ô \\
\hline \multicolumn{2}{|l|}{\1ù, ù, ÚÚ̇̇,} \\
\hline \multicolumn{2}{|l|}{analysis or interpretation of those} \\
\hline 23 & two curves in making the instream flow recommendation. \\
\hline 24 & There is no difference. Just the absolute magnitude \\
\hline 25 & between the two curves are different. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 01 & \(n\), this is the apples and oranges curve, \\
\hline 02 & where this one was derived using preference curves, and \\
\hline 03 & this was derived using utilization curves. And the \\
\hline 04 & shape is more similar, if you take E.A.'s preference \\
\hline 05 & curve to compare. This was the one that was the output \\
\hline 06 & from the utilization curve. Their preference curve \\
\hline 0 & shape is similar, but also levels off. \\
\hline 08 & But this -- this DFG curve is still rising. \\
\hline 09 & There's still a noticeable rise throughout the whole \\
\hline 10 & range of 40 to 60, and even if it were extrapolated off \\
\hline 11 & the chart. And there is no dip in the DFG curve as \\
\hline 12 & there is in the E.A. curve; is that correct? \\
\hline 13 & MR. BIRMINGHAM: Objection. I've counted five \\
\hline 14 & questions. And I wonder if we could break them down? \\
\hline 15 & MS. CAHILL: Does this curve show increasing \\
\hline 16 & weighted usable area throughout the range of 40 to 60? \\
\hline 17 & A Yes. \\
\hline 1 & Q And even at 100 is the curve still rising? \\
\hline 19 & A At 100 and beyond, I can not tell you what that \\
\hline 20 & curve will do. And from my oral testimony, I have \\
\hline 21 & concern of the appropriateness of the hydraulic \\
\hline 22 & modeling at ranges over 70 cfs. And at 2.5 , the \\
\hline 23 & measured discharges in that curve laying flat, if the \\
\hline 24 & analysis were redone, may not even look like that. \\
\hline 25 & HEARING OFFICE DEL PIERO: Miss Cahill, you need \\
\hline 0 & to identify which curve you're talking about. \\
\hline 02 & MS. CAHILL: I'm sorry. I was referring to the \\
\hline 0 & ve that's been reidentified as CDFG curve. It's the \\
\hline 04 & dashed curve on Figure 2 from Mr. Hanson's testimony. \\
\hline 05 & And, in fact, the peak that shows on the E.A. \\
\hline 06 & curve, on that same figure, is not present when you \\
\hline 07 & look at E.A.'s weighted usable area when derived from \\
\hline 08 & their preference curve, is it? \\
\hline 09 & A I'm sorry. I didn't understand the question. I \\
\hline 10 & lost it \\
\hline 11 & Q E.A.'s curve shows a peak here. And this is \\
\hline 12 & E.A.'s weighted usable area curve derived using their \\
\hline 13 & utilization curve; is that right? \\
\hline 14 & A That is correct. \\
\hline 15 & Q It's correct that it was derived that way. And is \\
\hline 16 & it correct that it shows a peak? \\
\hline 17 & A Yes, ma'am. \\
\hline 18 & Q And is there a similar peak when you take their \\
\hline 19 & weighted usable area output when they ran their model \\
\hline 20 & with their own preference curve? \\
\hline 21 & A Could you show me that, please? \\
\hline 22 & Q Yes. I think it's back there \\
\hline 23 & MS. CAHILL: This is Figure 8 in Los Angeles' \\
\hline 24 & report. \\
\hline 25 & DR. HARDY: I found it in my copy of the report \\
\hline 0 & Q BY MS. CAHILL: And while it -- does that curve show \\
\hline 02 & the same type of peak as the utilization derived curve? \\
\hline 0 & A I'm not sure I understand what you mean by "the \\
\hline 04 & same type of peak." \\
\hline 05 & Q Well, there's apparently a rather sharp peak on \\
\hline 06 & the curve in Figure 8 that was derived using \\
\hline 07 & utilization curves that is -- and there's a dip \\
\hline 08 & following that peak that doesn't appear to be present \\
\hline
\end{tabular}
```

when you look at the curve derived using preference
curves.
A Well, I don't believe -- I believe that there is a
dip, but it's not as pronounced in the preference curve
as in the utilization curve.
Q Now, much of your discussion focused on the
juvenile curves. In fact, in the end, did DFG use the
weighted usable area derived from the juvenile curves
to set its flow recommendations?
A No, they utilized the results of the adult and/or
spawning curves. And I believe that I still have
issues relative to the applicability of the Smith and
Acitunal (phonetic) adult curves utilized in the study.
Q These are now the Smith and Acitunal (phonetic)
Ô
are cover conditioned.
There are -- in this case the model would use one of
the first four. Are any of the bimodalities that
concerned you with the juvenile curves present in the
adult curves?
A No. Aside from the relationships as represented
by the depth suitability curves of Smith and Acitunal
(phonetic) I have no problem in a general sense with
those relationships. I do have a problem with the
cover condition.
Q And with regard to the Smith and Acitunal
(phonetic) velocity curves, there may be -- is there --
there one here that shows the type of bimodality with
which you're concerned?
A The no cover curve has a bimodality in it. The
overhead -- which is the no-cover curve. The overhead
and object cover curve with the flat no-change in
habitat preference between three and six feet per
second is problematic.
And I also have a problem with the bimodality in
the cover types combined suitability curve for
velocity.
Q The cover types combined curve is probably not
used, though, is it?
A It was almost -- I, frankly, could not tell with
absolute certainty how the mechanical aggregation of
these results in the application of the PHABSIM
modeling between no cover, object cover, overhead cover
0163
and the overhead and object cover were actually
implemented within the analysis. It's not specified
directly in a tractable review process in their report.
Q Do you know which of those cover types was the
most common on Rush Creek?
A No, ma'am.
Q I believe in your testimony you indicated that you
had no difficulty with the Smith and Acitunal
(phonetic) brown trout depth criteria.
A In terms of their functional relationships
representing the response to brown trout to depth
utilizations, no.
Q And I also believe you thought one of the -- that
you objected to some Smith and Acitunal (phonetic)
curves, but an exception was the spawning curves.

```
```

 Do you have any problem with the spawning curves?
 They're not up there.
A Do we have a copy of Smith and Acitunal's
(phonetic) report that I could examine?
Q Well, we do. I thought maybe what we could do is
look at your own testimony where you said that, on page
55 of your testimony, where you state, "A review of
suitability curve sets from Smith and Acitunal
(phonetic) reveals biologically unrealistic
relationships for nearly every brown trout life stage.
0164
The sole exceptions are depth for adults and the
spawning criteria".
A Right. I believe that my recollection of the --
both depth and velocity suitability curves from Smith
and Acitunal (phonetic) I felt adequately represented
what was there.
Q So, in fact, of the ones that the Department of
Fish and Game ultimately relied on in preparing their
report, it is only the adult velocity set of curves
with which you have a problem?
A Well, the results in the instream flow report also
presents information on the adult juvenile fry and
spawning. And as I evaluated those reports, in terms
of not just adult habitat, for instance, but the other
life stages present in the stream, the ability to
adequately review what would be appropriate for those
streams, I looked at the consideration of all the life
stages.
Q Do you know whether the no-cover condition is rare
on Rush Creek?
A In terms of a -- in terms of what?
Q In terms of would it have been commonly used, the
no-cover criteria, would that have been input for many
Ô
transects, or is it likely that it was rarely
25 used, because that's not a common condition on the
0165
stream?

```
\begin{tabular}{ll}
23 & Mr. Hanson indicated in his testimony, their review of \\
24 & that and sensitivity and examining the data, they felt \\
25 & that they could combine that. But I have not reviewed \\
& \\
01 & that directly. \\
02 & Q Are there any biologically unrealistic \\
03 & relationships in the E.A. curves? \\
04 & A Which curves? \\
05 & Q Any of the curves used by E.A.? \\
06 & A I presume you're referring to suitability curves \\
07 & and not habitat? \\
08 & Q Yes. Yes. \\
09 & A Well, again, I think that if you are referring in \\
10 & particular to the zero suitability at depths greater \\
11 & than two feet, the suitability curves for utilization, \\
12 & and/or preference as presented in the report, I don't \\
13 & believe would represent biologically justifiable \\
14 & criteria. \\
15 & But again, I think that what's missing are the \\
16 & results as presented in Figure \(2, ~ s h o w i n g ~ t h a t ~ t h e ~\)
\end{tabular}
have not examined that
01 report in any detail.
02 Q How long have you known that you would be
03 testifying in these proceedings?
```

A Perhaps six weeks, a month to six weeks.
Q And when was the first that you learned that there
was a final?
A Yesterday after lunch.
Q I want to touch just briefly on your comment
regarding temperature modeling on Rush Creek. In
addition to modeling, did that report also present
actual measured temperature data?
A I believe that to be true.
Q And in the event of a conflict between the
modeling and the actual measured data, would you be
comfortable relying on measured data for a particular
flow.
A I'm a great proponent of empirical measurement.
Q So the answer is yes?
A Yes, ma'am.
Q Have you ever seen Rush Creek?
A Many times.
Q In your written testimony, you've indicated that
flows that protect }80\mathrm{ to }85\mathrm{ percent of the maximum
potential habitat over the ranges of discharges
anticipated to occur are typically targeted under
multiple use consideration.
Are you specifically making flow recommendations
on Lee Vining Creek?
A I was asked to evaluate the information contained
in the Lee Vining instream flow report. That included
the PHABSIM analyses, and in terms of instream flow,
incremental methodology, all of the other related
information in that report, and to make a
recommendation of what I felt would be a minimum flow
that would protect the resource.
Q Okay. And so you have made a recommendation in
your testimony?
A Yes, ma'am.
Q And it was based on the draft?
A Yes, ma'am.
Q And is it subject, then to, being changed in light
of the final?
A I believe there would be that potential.
Q Almost finished here, I think, with you. With
regard to your criticisms of the DFG report and flows
over 60 cfs as they relate to gravel, have you listened
to Dr. Beschta's testimony?
A Yes, ma'am.
Q Do you believe in light of Dr. Beschta's testimony
that flows over 60 cfs would be detrimental to fishery
0170

```
```

habitat in Rush Creek?

```
habitat in Rush Creek?
A No, ma'am.
A No, ma'am.
Q Thank you.
Q Thank you.
    MS. CAHILL: Dr. Morhardt, I have just a -- very
    MS. CAHILL: Dr. Morhardt, I have just a -- very
    few questions.
    few questions.
    Q BY MS. CAHILL: First of all, can you tell us what
    Q BY MS. CAHILL: First of all, can you tell us what
    your involvement was in the two fish population reports
    your involvement was in the two fish population reports
    that were submitted, I believe they were LA DWP 16 A
    that were submitted, I believe they were LA DWP 16 A
    and B; is that correct? Dr. Morhardt, do you know what
    and B; is that correct? Dr. Morhardt, do you know what
    the exhibit numbers were on those two reports?
    the exhibit numbers were on those two reports?
    A BY DR. MORHARDT: I don't, but these are the E.A.
```

 A BY DR. MORHARDT: I don't, but these are the E.A.
    ```
```

reports you're referring to?
Q Yes. And did you do the bulk of the research in
those reports?
A No, I did not.
Q And did you do the bulk of the analysis?
A No, I did not.
Q And who did?
A Carl Meesic (phonetic) did most of it.
Q What are some of the factors that affect the size
of trout populations in the eastern Sierra?
A That's a very good question. We did extensive
regression analysis on all the data produced by
Deinstadt in the EPRI model and were unable to explain
more than about half of the variability in population

```
                                    _0171
    size.
    I truly believe that the actual controlling
    factors of fish populations in the eastern Sierra are
hardly understood at all.
Q But can you give us some of the factors?
A Well, I wish I could. I mean, we took as hard a
look at the existing data as one can take, I think,
using all of the different kinds of habitat data that
were produced and collected by the Fish and Game
requirement, and got very few strong correlations of
any sort.
Q Well, I guess let me ask this a different way.
Does water temperature affect trout populations?
A It certainly can. But water temperature did not
turn out to be significant under the analysis that we
did.
    Q Does conductivity affect --
    A It could. It's possible. But in the analysis of
    those data, it had very little effect.
    Q Do the existence of nutrients in the water affect
    the size of trout?
    A There were no data in that data set on nutrients.
    Q In general?
    They could, yes. If something else were not --
    Does stream elevation affect the size of the
                                    0172
    population?
    A There was some effect of stream elevation in that
    data set.
    Q Does gradient affect the size of trout
    populations?
    A I think we found very little effect in gradient.
    Q How about habitat quality?
    A What is that? I don't know what you mean by
    habitat quality.
    Q I'm not sure I know what I meant by that. Let me
    go on.
        MR. DODGE: Is that the same as Mr. Habitat?
            HEARING OFFICER DEL PIERO: That's his cousin
        Q BY MS. CAHILL: Is it true then that trout population
        size is controlled by a number of factors other than
        flow?
    A There are a great many things that could be
    effecting trout populations. The problem is that we
```

 19 just don't know what they are in the eastern Sierra.
 Q But to look at flow alone wouldn't take into
 account all the factors that might, in fact, be
 affecting the size of those populations?
 A That's absolutely right. The data -- the
 analysis that we did for EPRI looked at all of the
 factors for which we had data. What I've plotted here
 0173
 in these figures is just the effect of flow.
 Q Is there a difference in capture efficiency
 between electrofishing results on small streams and the
 results on large streams?
 A There was not in the Deinstadt data. We looked at
 the variants associated with the sample sizes with the
 samples on all of the different streams. They did
 produce that. And there is no correlation between flow
 and variants in their samplings.
 Q Typically, though, aren't electrofishing results
 such that on a small stream, it's easier to capture a
 larger percentage of the fish that are actually there,
 than it is when you electrofish a large stream?
 A Well, it certainly can be, but if you make enough
 passes, you may get all the fish in any case. What
 must have happened in Deinstadt's case is on the larger
 streams, they made more effort. They have quantitative
 data as to whether or not they did catch fewer of the
 fish on large streams. And in fact, they did not.
 Q And are the Deinstadt data from a single year per
 report?
 A No. They're from several years. The largest
 stream, the Owens River, was sampled in 1980. The rest
 of them were between 1983 and 1985.
 Q When you put together your exhibits, each of them
 0174Ô
excluded data from the
Bishop Canal, the Owens River and Hot Creek.
Are those three of the largest streams in the
Mono/Owens area?
A No.
Q How many other streams are of comparable size?
A Well, the Bishop Creek Canal certainly isn't one
of the largest streams.
Q With regard to the Owens River and Hot Creek, how
many streams in the Owens/Mono Basin are larger than
those two?
A I think none are larger than the Owens River. I
actually don't know what the flow is in Hot Creek.
Q What is Rush Creek? Is Rush Creek similar in size
to Hot Creek?
A Since I don't know what the flow on Hot Creek is,
I can't answer that.
Q Are the Owens River and Hot Creek two of the most
productive streams in the Owens/Mono Basin?
A Hot Creek certainly is. I'm sure it is, because
it has a fish hatchery just upstream from the reaches
which were sampled. And there's literally thousands of
fish and fish food being thrown into the stream.
The Owens River, however, the data that Deinstadt
collected were collected in reaches which were clearly

```
influenced by upstream migrants on spawning runs. So I think the data from the Owens River, both in the upper reach and in the lower reach between Pleasant Valley Dam are not representative of resident trout population.
Q We, in fact, in attempting to correlate size of flow or size of stream and productivity, you in fact, eliminated two of the most productive streams in the area; isn't that right?
A I did, because I thought data that Deinstadt had collected were inappropriate for the analysis. I was looking at resident trout populations. And it makes no sense to look at migrant on the spawning run when you're sampling resident populations.
Q I think I'm finished. Let me just have one moment. That's all. Thank you both very much.

HEARING OFFICER DEL PIERO: Thank you.
Mr. Dodge?
CROSS-EXAMINATION BY MR. DODGE
Q Dr. Hardy, I have just a couple of questions for you. On page 58 of your testimony, you say, "Flows which protect 80 to 85 percent of the maximum potential habitat over the ranges of discharges anticipated to occur are typically targeted under multiple use considerations."
```

 Do you see that, sir?
 A BY DR. HARDY: Yes, sir.
Q Now, you say 80 to 85 percent, that is a
percentage of habitat as it exists today; isn't that
right?
A Potentially in many instream flow studies where we
may reconstruct native or natural hydrographs versus
existing conditions, which may be altered hydrographs
or conditions, that may be based on historical
conditions.
Q But the IFIM's that are at issue in this
proceeding relate to an existing stream channel, as it
exists when the IFIM's were taken; isn't that right?
A That is correct.
Q Now, let me ask you to assume, hypothetically,
that our goal in this proceeding is to reestablish
conditions that benefited the historical fishery. And
ask you to assume, hypothetically, that the weighted
usable area today in Rush Creek is much lower than it
was historically pre-diversion, because after
diversions, the riparian vegetation died and great
amounts of water came down the Rush Creek Channel
widening and straightening the stream and cutting off
multiple channels, so that the weighted usable area
today in Rush Creek is much lower than it was

```

01 historically. ô
\1ù, ù, ÚÚİ,
that assumption in mind?
A Yes, sir.
04 Q Would you agree with me that establishing flows
05 which protect 80 to 85 percent of the maximum potential
06 habitat today would not accomplish the goal of
```

restoring conditions that benefited the fishery?
A Actually, I believe it would probably be an
underestimate of how much better conditions would be.
And that is based on my observation that if you were to
take, for example, 20 cubic feet per second and run it
down the cross-sections collected from Rush Creek,
representing those hypothetical conditions, and then
evaluate those same channel geometries as Rush Creek
begins and has been shortening the channel widths and
deepening the water, that that same unit volume of
water would actually produce more weighted usable area
than what exists under current analysis.
Q Did you understand my question, sir?
A I believe so.
Q And hypothetically, if there were a great deal
more weighted usable area pre-diversion than there is
today, then applying the }80\mathrm{ to }85\mathrm{ percentage that
you've used with respect to the existing IFIM's really
doesn't restore the historical conditions, does it?
0178
Let me ask it another way. Wouldn't you have to
attempt to restore the historical conditions before you
applied the 80 to 85 percent that you referred to?
HEARING OFFICER DEL PIERO: Dr. Hardy, do you
understand what he's asking you?
DR. HARDY: I'm not exactly sure, Mr. Del Piero.
HEARING OFFICER DEL PIERO: Would you like to have
the question read back? The original question read
back to you?
DR. HARDY: I think so. I think I misunderstand
what --
HEARING OFFICER DEL PIERO: Mrs. Anglin, I think
if you would be kind enough to recall the original
question, and could you please read that back to
Dr. Hardy.
(Whereupon the record was read as requested.)
HEARING OFFICER DEL PIERO: Do you want to respond
to that question?
DR. HARDY: Let me think for just a second. I
want to work through the assumptions.
HEARING OFFICER DEL PIERO: Do you understand the
question?
DR. HARDY: I think so.
If I may articulate my understanding of those
assumptions, what you're indicating is that if I assume
0179
that per-unit discharge historically generated more
weighted usable area habitat than what currently exists
because of those factors --
Q Correct.
A -- that is what you asked me to assume.
Q Correct.
A Would protecting 80 percent of the weighted usable
area that exists now accomplish the goal of
restoring --
Q The pre-diversion weighted usable area?
A Perhaps.
Q But wouldn't it be extremely unlikely?
A I don't think it would be extremely unlikely at
all.

```
\begin{tabular}{|c|c|}
\hline & \multirow[t]{2}{*}{MR. BIRMINGHAM: Would the reporter mark tha} \\
\hline & \\
\hline & Q BY MR. DODGE: Would you agree with me that if our \\
\hline 18 & oal is to reestablish the historical weighted usable \\
\hline 19 & area, and that it is now, for reasons that I set out in \\
\hline & he hypothetical, substantially less than it was \\
\hline 21 & \multirow[t]{2}{*}{historically, that it makes sense for us to have a restoration program which reestablishes the historical} \\
\hline 22 & \\
\hline & weighted usable area, and then to apply your 80 to 85 \\
\hline 24 & percentile? \\
\hline & A \\
\hline & \multirow[b]{2}{*}{having difficulty is that when I look at the stream and} \\
\hline & \\
\hline & \\
\hline & and what tha \\
\hline 04 & onstitutes, as I can see multiple scenarios and \\
\hline 05 & conditions that could accomplish that set of \\
\hline 06 & assumptions, and that's why I'm having difficulty \\
\hline 07 & answering in a more direct manner. \\
\hline & Q BY MR. DODGE: Dr. Morhardt. Now, as I understood \\
\hline 09 & the sum and substance of your testimony, that you \\
\hline 0 & looked at Rush Creek at 19 cfs and counted fish, \\
\hline & \\
\hline 12 & \multirow[t]{2}{*}{A BY DR. MORHARDT: Rush Creek and the rest of the streams on the east side, yes.} \\
\hline & \\
\hline 14 & Q Rush creek was 19 cfs? \\
\hline 15 & orrect \\
\hline & Q And not any other flows? \\
\hline 17 & A That's correct. Well, the flows along Rush Creek \\
\hline 18 & differ, of course, because it's a losing stream. \\
\hline 19 & Q Right. But in terms of the discharge, it was 19 \\
\hline 20 & A That's correct \\
\hline 21 & Q And basically, you found twice as many large trout \\
\hline 22 & in Rush Creek at 19 cfs than you found in most other \\
\hline & eastern Sierra trout streams? \\
\hline 24 & A That's probably an oversimplification, but on the \\
\hline 25 & \multirow[t]{2}{*}{average of all the samples that were taken, that was} \\
\hline & \\
\hline & true. \\
\hline 02 & Q And you concluded, therefore, that 19 was okay? \\
\hline 03 & A I think that suggests that it's doing just fine in \\
\hline 04 & terms of producing trout, compared to other streams in \\
\hline 05 & the eastern Sierra under that flow regime. \\
\hline 06 & \multirow[t]{2}{*}{Q In terms of the DFG flow regime, you really don't know what sort of trout that would produce?} \\
\hline 07 & \\
\hline 08 & A That's right. I don't. But there are other \\
\hline 09 & streams that have flows that are like the DFG flow \\
\hline 10 & \multirow[t]{2}{*}{regime, which don't produce any more trout, making me think that flow probably has had most of its effect by} \\
\hline 11 & \\
\hline 12 & the time you get to flows of about 19 cfs , and \\
\hline 13 & \multirow[t]{2}{*}{something other than that is limiting at that point. Q The size of the streams you used to compare Rush} \\
\hline 14 & \\
\hline 15 & \multirow[t]{2}{*}{Creek and Lee Vining Creek, approximately how large were these streams in terms of mean cfs?} \\
\hline 16 & \\
\hline 17 & A Pardon me. I'll give you an answer. I'm going to \\
\hline 18 & \multirow[t]{2}{*}{have to give you the average in the log of the mean annual flow, which is in meters cubed per second, which} \\
\hline 19 & \\
\hline 20 & \multirow[t]{2}{*}{\begin{tabular}{l}
is minus 1.13. \\
HEARING OFFICER DEL PIERO: Mr. Dodge, don't worry
\end{tabular}} \\
\hline 21 & \\
\hline
\end{tabular}
22 about the time. We've turned the clock off until he
23
gets an answer for us.
24
25
Q BY MR. DODGE: Let me --
01 A What document are you looking at?
\begin{tabular}{|c|c|}
\hline 03 & Can you give me the approximate mean average flow of \\
\hline 04 & the Upper Owens River without Mono Basin infusions of \\
\hline 05 & water? \\
\hline 06 & A I think it's around 55 cfs. \\
\hline 07 & Q It could be as high as 76 cfs? \\
\hline 08 & A It could be. \\
\hline 09 & Q The same question for Hot Creek as it runs into \\
\hline 10 & the Owens River. What is the approximate size of Hot \\
\hline 11 & Creek? \\
\hline 12 & A I don't know. I haven't seen gauge data on it. \\
\hline 13 & Q Could it be as high as 50 to 60 cfs? \\
\hline 14 & A Yes, I think it could be. \\
\hline 15 & Q Now, if -- if you had just -- let me back up on \\
\hline 16 & that. You talked also about large fish. And your \\
\hline 17 & definition of a large fish is what? \\
\hline 18 & A I talked about catchable size fish, I believe. \\
\hline 19 & And the definition -- the sample that I used in Figure \\
\hline 20 & Number 1 are fish over eight inches long. \\
\hline 21 & Q And fish over eight inches long, you didn't \\
\hline 22 & purport to call out streams that produced very large \\
\hline 23 & fish. If a fish hit eight inches, it was a, quote, \\
\hline 24 & large fish; is that correct? \\
\hline 25 & A I don't think I characterized it thus. \\
\hline 01 & looked at data for fish over 12 inches long as well. \\
\hline 02 & Q But in terms of this testimony, you didn't -- you \\
\hline 03 & didn't call out any comparison as between high flows \\
\hline 04 & and very large fish, correct? \\
\hline 05 & A I have done that analysis, but I didn't do it in \\
\hline 06 & this testimony. \\
\hline 07 & Q Okay. Now, could you tell the Board why you \\
\hline 08 & excluded the Upper Owens River? \\
\hline 09 & A I excluded most of the sites on it, because the \\
\hline 10 & population that was sampled by Deinstadt included fish \\
\hline 11 & that had run upstream from Crowley on their annual \\
\hline 12 & spawning run, and I was more interested in resident \\
\hline 13 & trout populations. \\
\hline 14 & I excluded the uppermost reach above the Albert's \\
\hline 15 & Ranch, because the population was about half rainbow \\
\hline 16 & trout. And I excluded all streams from the analysis \\
\hline 17 & for which the population was not predominantly brown \\
\hline 18 & trout \\
\hline 19 & Q Did you recall in your direct testimony that you \\
\hline 20 & said you excluded the Upper Owens because it was, \\
\hline 21 & quote, much larger, end quote? \\
\hline 22 & A The Lower Owens. The Lower Owens. It is much \\
\hline 23 & larger. \\
\hline 24 & Q Now, could you have just as easily compared Rush \\
\hline 25 & Creek and Lee Vining Creek to the Upper Owens River and \(\begin{array}{r}0186\end{array}\) \\
\hline 01 & Hot Creek? \\
\hline 02 & A Indeed, I have done so. \\
\hline 03 & Q And had you done so, would you agree with me that \\
\hline 04 & you would have found that the fisheries in Rush Creek \\
\hline O & \\
\hline any & measure that you \\
\hline 06 & care to use, would be substantially inferior? \\
\hline 07 & A Well, it's very hard to say, because the data set \\
\hline 08 & for the Upper Owens River includes fish that have swum \\
\hline 09 & up stream on their spawning runs. And I don't know \\
\hline
\end{tabular}
10
what the resident population is. To my knowledge, it
11
has not been sampled. Hot Creek --
12
Q Okay.
13
A Hot Creek --
14
Q Excuse me, sir. Go ahead.
15
A Hot Creek, I believe, is a radically different
16
17
situation. It's an extremely low gradient stream that
18
into it just upstream in the reach that is -- was
19
sampled by Deinstadt. And I think that contributes in
20
a way which makes it completely uncharacteristic of
21 other Sierra streams.
```

 1 8 \text { characteristic of resident trout. So I don't think I}
 have the data base on which to make that conclusion.
 MR. BIRMINGHAM: Would the reporter mark that
 question please?
 Q When you make stream versus stream comparisons of
 populations, would you agree with me that different
 streams have different limiting factors?
 A That's undoubtedly true.
 Q And some streams have inherently better habitat?
 A I'm sure that's true.
 Q Now, when you say Rush Creek has twice as many
 large trout, could that be a function of its habitat as
 opposed to the 19 cfs?Ô
 Q Now, I was interested in your testimony at page 72
 that you found a lack of correlation, I believe that's
 your term, between population and flow.
 Do you recall that?
 A Yes.
 Q Now, there has been testimony about a method of
 recommending flows called the Tenant Method? Are you
 familiar with that method?
 A I am.
 Q Is that also called the Montana Method?
 A It is.
 Q And is the fundamental premise of the Tenant
 Method that a higher percentage of the natural flow
 leads to a better fishery?
 A Yes, it is.
 Q So that -- the Tenant Method is just fundamentally
 inconsistent with your statement that you see little
 correlation between population and flow?
 A The Tenant Method is based on percentage of annual
 0190
 flow. What -- the correlations I have done are not
 based on that, they're based on the actual flow in the
 streams.
 Q But you just told me that the Tenant Method
 assigns a better fishery to a higher percentage of the
 natural flow, correct?
 A That is correct.
 Q And you have testified that you have found a lack
 of correlation between population and flow, correct?
 A The two things are not -- they're not comparable.
 What you've -- I've -- what the Tenant Method is saying
 within a given stream, the higher the flow, the better
 will be the fish habitat.
 What I've done is compare the populations across a
 series of streams with the flows in those streams,
 without regard to the percentage of the actual natural
 flow.
 Q So the Tenant Method says that the fish habitat is
 going to be better within a given stream the higher the
 percentage of the natural flow?
 A That's correct.
 Q And you're here today telling us that the fishery
 is not going to be better in Rush Creek if the flows go
 up from 19 cfs, correct?
 A I'm telling you that in other streams in the
    ```
01
02
02 that even where flows have been diverted to a very
03
small percentage of the natural flow, the fish
04
05
0 population still remains high.
08 inconsistent with the IFIM approach about increasing
09
weighted usable area?
10
A As Mr. Hanson testified, the IFIM approach
11
includes factors other than weighted usable area. It
12
13 explicitly includes other things that might be limiting
```

more line of questions?
HEARING OFFICER DEL PIERO: Sure. Your time has
run out.
Q BY MR. DODGE: This is a question for both of you
and -- I don't mean as a flip question. This is a
serious question: We've talked about the Tenant Method
and the Montana Method setting stream flows. And we've
talked about the IFIM method, which produces weighted
usable area at various flows, and it seems like as you
read it it's certainly complicated, seems like a
scientific method.
In the spring of 1990, when at least you and I
0196

```
    were together, Dr. Morhardt, I don't think Dr. Hardy
    was with us, there was another method of determining
    flows which got the acronym of BOGSAS, which was, as I
    understood it, a bunch of guys standing around the
    stream.
            And, you know, this is a serious question. You
    have knowledgeable fisheries people taking a look at
    the stream and trying to determine what flows are good
    for trout.
    Now, is the BOGSAS method in your view a
    reasonable method of doing this?
    A BY DR. HARDY: I defer to my distinquished colleague,
    Dr. Morhardt.
    A BY DR. MORHARDT: A lot of decisions on fisheries in
    biology are made using that method, but it's the method
    of sort of last resort. We actually had some method
    that produces real data. You out -- and produces
    something that actually produces a result which is
    correlated with the resulting fish population, I think
    we ought to use that. Absent anything else, you're
    often reduced to something like that.
            DR. HARDY: I would agree with that. Typically,
        one should consider all available information. And
        whether any particular information is produced from
        some modeling effort, you still have to go through the
                            0197
    exercise of exercising professional judgment in the
    interpretation of those results, vis-a-vis, does it
    make intuitive and/or rational sense?
    Q BY MR. DODGE: And in making that -- in exercising
    that professional judgment, is it helpful to have the
    person or persons exercising that judgment to have had
    substantial experience with respect to the streams at
    issue?
            DR. MORHARDT: Yes and no. Many times, what
    happens is that once some real scientific research is
    done, one discovers that all of the professional
    opinions that have been vented heretofore, even by
    people very familiar with the situation, are just plain
    incorrect.
            People tend to develop theories and use them and
    apply them when, in fact, there are no data to support
    them, and often they're just wrong. This is true for
    any branch of science.
            And I don't think great familiarity with a system
    necessarily improves one's perspective on what's
    actually correct. Often, getting someone in who has no
```

familiarity at all, but hasn't developed a bunch of
prejudices toward that system over time has a clearer
view than someone who's been looking at it for a long
time.
01 MR. DODGE: Thank you very much.
HEARING OFFICER DEL PIERO: Thank you very much.
Mr. Roos-Collins?
CROSS-EXAMINATION BY MR. ROOS-COLLINS
Q Good afternoon, Dr. Hardy. Good afternoon,
Dr. Morhardt.
Dr. Hardy, I will begin with you. On page 53 of
your direct -- of your written testimony, you describe
O
to sustain a viable
10 fishery; is that correct?
A For which creek?
Q Lee Vining Creek.
A Yes, sir.
Q Did you hear my questions earlier today to
Mr. Hanson regarding the objective for this proceeding?
A I believe so.
Q What's the relationship between a, quote, viable
fishery, unquote, and the historic fishery in Lee
Vining Creek?
A It is my understanding from having reviewed the
testimony admitted -- that the experts submitted in
this hearing and listening to the testimony, that the
flow ranges that I have recommended to sustain a viable
fishery in terms of reproducing brown trout for the
flow ranges, and what I would anticipate to be

```
        0199
    representative numbers would represent, in my opinion,
    conditions in the population prior to the 1941 period.
        Q What was the brown trout population in Lee Vining
        Creek before 1941?
        A I believe it to have been lower than it is today,
        and primarily the fish numbers were sustained by
        California Fish and Game stocking.
        Q And what is the basis for that belief?
        A From a general review of the testimony in these
        proceedings and discussions with those in LA DWP
        familiar with the materials presented.
        Q Are you familiar with Mr. Trihey's analysis of
        historic conditions in Lee Vining Creek?
        A I've only seen that report briefly. I have not
        reviewed it in detail.
        Q Do you have an opinion, then, whether habitat
        conditions related to the fishery have degraded since
        1941?
        A I believe they have somewhat.
        Q Let's talk about instream flow incremental
        methodology. The hearing officer has reminded us on
        several occasions that he has experience in air quality
        law. In air quality law, districts often have guidance
        manuals to assist in dispersion modeling.
            Are you familiar, generally, with the guidance
        0200
        01 manuals which air quality districts use for that
    02 purpose?
\begin{tabular}{|c|c|}
\hline 03 & A No, sir. \\
\hline 04 & Q Let me put the question to you more directly. \\
\hline 05 & Does the California Department of Fish and Game have a \\
\hline 06 & guidance manual or document which governs the instream \\
\hline 07 & flow incremental methodology studies done under its \\
\hline 08 & jurisdiction? \\
\hline 09 & A I do not know that. \\
\hline 10 & Q Have you ever seen the document entitled, "DFG \\
\hline 11 & Requirements for an IFG-4 Incremental Instream Flow \\
\hline 12 & Study" dated, November 17th, 1983, published by the \\
\hline 13 & Department of Fish and Game? \\
\hline 14 & A I have no independent knowledge of that document. \\
\hline 15 & Q So you would have no opinion whether the studies \\
\hline 16 & conducted by the Department of Fish and Game for this \\
\hline 17 & proceeding are consistent with that guidance document, \\
\hline 18 & if it is a guidance document? \\
\hline 19 & A That is true. \\
\hline 20 & Q What about the U.S. Fish and Wildlife Service? \\
\hline 21 & Does it have a guidance document which generally \\
\hline 22 & governs instream flow studies conducted under its \\
\hline 23 & jurisdiction? \\
\hline 24 & A There are actually several. \\
\hline 25 & Q Could you name them? \\
\hline 01 & A Well, I believe, if \(I\) am not mistaken, that the \\
\hline 02 & U.S. Fish and Wildlife Service Instream Flow \\
\hline 03 & Information Paper, I believe, 21, and in the -- and I'd \\
\hline 04 & have to check on the number for sure. I can tell you \\
\hline 05 & the color of it. It's an off-color orange. It's \\
\hline 06 & sitting right here on my desk. \\
\hline 07 & I also know this: We provide specific and some \\
\hline 08 & also general guidelines in the lecture note material \\
\hline 09 & that I have written and cooperated with in editing with \\
\hline Ô & \\
\hline \multicolumn{2}{|l|}{H} \\
\hline \multicolumn{2}{|l|}{teaching} \\
\hline 11 & the instream flow methodology computer course that \\
\hline 12 & outlines guidelines in terms of how you approach the \\
\hline 13 & study, how you review the information that should be \\
\hline 14 & collected and obtained, and how it's to be analyzed and \\
\hline 15 & interpreted. \\
\hline 16 & Q Does the U.S. Fish and Wildlife Service \\
\hline 17 & consistently apply the second document in its review of \\
\hline 18 & instream flow studies? \\
\hline 19 & A By second document, are you referring to my \\
\hline 20 & lecture notes? \\
\hline 21 & Q Yes. \\
\hline 22 & A Yes, in so much that it is the principal document \\
\hline 23 & that is used for all of the instream flow training for \\
\hline 24 & application of PHABSIM. \\
\hline 25 & Q What would a good name for the first document be 0202 \\
\hline 01 & for purposes of my cross-examination? Shall we call it \\
\hline 02 & Document 21? \\
\hline 03 & A I think until I could come up with a better name \\
\hline 04 & for it. There's a specific title. Gary might know \\
\hline 05 & what it is. \\
\hline 06 & Q That will do. I just don't want to confuse you by \\
\hline
\end{tabular}
```

my question.
A Okay.
MR. BIRMINGHAM: How about the Orange Paper?
DR. HARDY: The Orange Paper I think would work.
DR. LI: It is 26.
DR. HARDY: It is 26?
DR. LI: Yeah, 21 or 26.
MR. ROOS-COLLINS: Let's call it at this time
Orange paper, per the excellent suggestion of Mr.
Birmingham.
MR. BIRMINGHAM: Let the record reflect that it
was Dr. Stacy Li who stated that it was 26. Spelled
L-I.
Q BY MR. ROOS-COLLINS: Dr. Hardy, is there anything in
the Fish and Game flow study submitted in this
proceeding which you believe was inconsistent with the
Orange Paper?
A Probably the one element would be the failure to
specifically validate the regional suitability curves
0203
in the application for these studies.
Q Have you talked with the Department of Fish and
Game biologist and contractors who did these studies to
express that concern to them?
A Not directly. Back in, I believe, }1989\mathrm{ when I
reviewed the Rush Creek instream flow report when it
was in draft form for LA DWP, I passed on my review to
them. And I do not know whether those were eventually
passed on to the consultants or California Fish and
Game for that report.
And I did provide some level of review comments in
the review of the Lee Vining instream flow report to LA
DWP, but I do not know whether those were forwarded on
to either the consultant or California Fish and Game.
Q Do you know whether the U.S. Fish and Wildlife
Service has recommended the use of Smith and Acitunal
(phonetic), or any published suitability criteria for a
flow study in any other proceeding?
Let me put that question to you more directly.
Does the U.S. Fish and Wildlife Service always insist
on the development of site-specific criteria to comply
with the Orange Paper?
A It is the -- according to the lecture notes, which
are a co-authored document with the Fish and Wildlife
Service in the chapter on suitability curves, there is
0204
a series of policy statements.
It is the policy at this point, and I am not
speaking for the Fish and Wildlife Service as a Fish
and Wildlife Service employee, but the policy statement
as articulated in the document says that the
suitability curves should be validated.
If they are literature curves, you should attempt
to develop site-specific curves, number one. If you
use literature curves, they should be validated
site-specific.ô
worse case scenario is all parties should
12 critically review with species experts literature based
13 curves to be applied. And that agreement for all
14 parties in the study should be reached.

```
\begin{tabular}{|c|c|}
\hline 15 & what is the basis for your belief \\
\hline 16 & that the published curves used by the Department of \\
\hline 17 & Fish and Game for studies in this proceeding have not \\
\hline 18 & been so validated? \\
\hline 19 & A To my knowledge there has never been any explicit \\
\hline 20 & statistical testing using recommended procedures by the \\
\hline 21 & Fish and Wildlife Service or others in a formal sense \\
\hline 22 & to validate those curves. Nor have I seen any evidence \\
\hline 23 & of the frequency distributions of use of those fish \\
\hline 24 & within these creeks versus the distribution of \\
\hline 25 & suitability. Or in the case of Acitunal's (phonetic) 0205 \\
\hline 01 & curves or Smith and Acitunal's (phonetic) curves, how \\
\hline 02 & those observations fell out in light of the preference \\
\hline 03 & curves utilize \\
\hline 04 & Q And you have not talked with Fish and Game \\
\hline 05 & biologist or contractors regarding these studies and \\
\hline 06 & the purported lack of allegations since 1989; is that \\
\hline 07 & correct? \\
\hline 08 & A Not directly, no, sir. \\
\hline 09 & Q Let me ask you about the statement on page 54 of \\
\hline 10 & your written testimony that the Lee Vining Creek report \\
\hline 11 & by the Department of Fish and Game is, quote, generally \\
\hline 12 & correct in its conceptual approach to assessing \\
\hline 13 & instream flows, end quote. \\
\hline 14 & Do you have the same opinion regarding the Rush \\
\hline 15 & Creek study? \\
\hline 16 & A Yes, I do. One of the things that I did find that \\
\hline 17 & I liked a lot about both Lee Vining and Rush Creek was \\
\hline 18 & the multidisciplinary aspects of the approach in terms \\
\hline 19 & of the different physical, chemical and biological \\
\hline 20 & components that were at least studied and considered in \\
\hline 21 & those report \\
\hline 22 & Q So given that you believe that the Fish and Game \\
\hline 23 & reports are generally correct in their conceptual \\
\hline 24 & approach, and given your identification of one apparent \\
\hline 25 & inconsistency between the Orange Paper and these \\
\hline & studies, would you be willing to make recommendations \\
\hline 02 & to the Board for improvements in the Fish and Game \\
\hline 03 & studies to correct that inconsistency if asked? \\
\hline 04 & A Yes, with the qualification that in terms of your \\
\hline 05 & question earlier about inconsistencies with the Orange \\
\hline 06 & Paper, I still did have some issues in those reports on \\
\hline 07 & their use of the multidisciplinary information and \\
\hline 08 & integration of information within the instream flow \\
\hline 09 & recommendations. \\
\hline 10 & There are, of course, a number of technical issues \\
\hline 11 & primarily surrounding the hydraulic simulations and \\
\hline 12 & choice of suitability curves that I believe would be \\
\hline 13 & solid recommendations for improving those studies. \\
\hline 1 & Q Thank you. Now in response to a question by \\
\hline 15 & Miss Cahill earlier today, you've stated that you had \\
\hline 16 & talked with Mr. Hanson regarding the data collection \\
\hline 17 & and analysis that went into the suitability criteria \\
\hline 18 & for the Rush Creek report; is that correct? \\
\hline 19 & A Yes. We've had some brief conversations about how \\
\hline 20 & that data was collected. \\
\hline 21 & Q On the basis of those conversations, are you \\
\hline 22 & prepared to compare E.A.'s Rush Creek report, and the \\
\hline
\end{tabular}
```

Department of Fish and Game's for reliability?
A Reliability in terms of what, sir?
Q Scientific reliability as a basis for this Board's
decision, what flow regime is necessary to reestablish
the historic level?
A I believe that the level that the terminal, if I
may call them that, results that are presented on
Figure 2 of Mr. Hanson's testimony, that the general
functional relationships in a broad sense, are very
similar, the insensitivity of the predictions in terms
of changes in weighted usable area, especially over the
range of higher discharges, to me would lead to the
same management decision. The answer to that would be
yes, sir.ô

```
```

A Correct.
Q You've heard the saying that, "a little knowledge
is a dangerous thing"?
A I believe I've heard that before.
Q Would you agree that your review of E.A.'s Rush
Creek report is preliminary?
A No. I've actually looked at quite a bit of detail
in E.A.'s Rush Creek report. And I have had several
conversations with Mr. Hanson on the mechanics of that
study.
Q Are you familiar with Cal-Trout Exhibit 18 which
is the October 22nd 1993 letter from the U.S. Fish and
Wildlife Service to Mr. Hanson regarding the Plavy

```

0208
```

River Project?
A I have not seen that document.
Q Did you hear my earlier question to Mr. Hanson
regarding the relationship of weighted usable area to
the fish population?
A I think so.
Q Let me be more specific. How would you convert
weighted usable area into a fish population estimate
in this proceeding?
A I wouldn't.
Q You would not use Department of Fish and Game's or
E.A.'s weighted usable area estimates to determine or
to predict likely fish populations?
A No. I believe what I would do is use the analysis
from the PHABSIM results as appropriate to make
recommendations for the protection of fisheries habitat
in those streams, and rely upon other ancillary
information such as the population data in eastern
Sierra streams versus discharge and other factors to
increase my confidence that establishing flow
recommendations based on physical habitat would indeed
then translate into and protect fisheries populations.
Q Dr. Hardy, have you ever heard Winston Churchill's
saying that, "Democracy is the worst of all possible
systems of government, except for the alternatives"?

```
        0209
    01 A I actually have heard that.
    02 Q E.A. has not prepared a flow study for Lee Vining
```

Creek; is that correct?
A That is my understanding.
Q So if the apparent inconsistency you identified
between the Fish and Game study on the one hand, and
the Orange Paper on the other were corrected, would you
recommend that the Board rely on the Department of Fish
and Game's Lee Vining Creek report for setting a flow
regime for Lee Vining Creek?
A Yes, I would recommend that as the best available
information. But again, I would request that in that
the Board would consider all of the available
information, and not simply the PHABSIM results.
Q Dr. Hardy, you have previously been asked several
questions regarding limiting factors in Lee Vining and
Rush Creeks. Let me ask you to summarize your opinion
on those limiting factors by creek.
In your opinion, what are the limiting factors
today in Lee Vining Creek?
A If I understood your question, you said I had been
asked what those were previously?
Q Yes.
A I have not to my knowledge been asked anything
about limiting factors in Lee Vining Creek.
Q My apologies. Let me ask you the question
directly.
In your opinion, what are the limiting factors
today in Lee Vining Creek?
A I'm not prepared to answer that question in
specifics. I believe that there are probably a number
of factors which are controlling the fish populations.
Q Rush Creek?
A Same thing. I believe that from my analysis of
the information on Rush Creek, I believe it's one of a
number of factors.
One in particular that comes to mind is the lack
habitat during the winter
period for which to overwinter, especially adult
salmonids.
And the ultimate carrying capacity is probably
limited by the low primary productivity as indicated by
the conductivities, and therefore the secondary
production in terms of invertebrates.
Q You know, yesterday I teased Mr. Dodge for being
an old dog who couldn't learn new tricks. I'm not much
younger. My memory may be fading on your testimony.
So let me ask you several questions at the risk of
repeating testimony you've already given.
Do you have a flow regime recommendation for this
0 2 1 1
Board for Rush Creek?
A In my testimony, I indicated a range of discharges
that would constitute a minimum instream flow and was
not intended to represent the only flow for the entire
year, that there would be obvious other flows that
should be considered. And that would be such things as
channel maintenance flows on a periodic basis.
Q And what was your recommendation for Rush Creek?
A I had indicated that based on my analysis and

```
ô
```

 10 viewing of the information that it would be in the 20
 to 30 cfs range.
 Q Did you hear my prior questions? Is Mr. Hanson's
 prior answers regarding Table 3A-3 from the draft EIR
 which describes the mean -- excuse me, the median
 monthly flows in the tributaries to Mono Lake?
 A Yes, sir.
 Q Do you agree with Mr. Hanson's answer that a flow
 regime of 20 to 30 cfs would approximate the zero
 percentile flow in Rush Creek?
 A If I could have reference to that table, I was
 confused by that answer, and I believe that I would
 like to address that.
 The information that I am examining is contained
 in Table 3A-3 and in the table on Rush Creek, the zero
 percentile indicated for 29.4 cfs. If you compare that
 0212
 value to the flow duration curves indicating the
 percent exceedence versus discharge for the same month,
 what one shows is that the zero percent indicates that
 29.4 is equal or exceeded }100\mathrm{ percent of the time.
 These data indicate that 113 cfs for Rush Creek in
 April is basically never exceeded.
 Q So the zero percentile in Table 3A-3 is the flow
 you would expect all the time?
 A Right. Flows of that magnitude or greater would
 be expected to be there at all times.
 Q It's the lowest reliable flow in the stream.
 A From this existing period of record.
 Q Have you ever made a recommendation in a
 regulatory proceeding which amounted to the lowest
 reliable flow in the stream, exceeded in the natural
 hydrograph }100\mathrm{ percent of the time?
 A Right. I would hope that the flow recommendation
 I would make would always be present and exceeded 100
 percent of the time.
 Q Let me put the question differently. If this
 Board adopted a flow regime of 20 to 30 cfs, not as the
 floor, but as the ceiling, that would correspond to the
 zero percentile flow which you would expect to be
 exceeded all of the time in natural conditions,
 correct?
    ```
0213

MR. BIRMINGHAM: Objection. Relevance. HEARING OFFICER DEL PIERO: Well, why don't you expand on that Mr. Birmingham, because I'm missing the point in terms of the relevance. He's pursuing hypotheticals with Dr. Hardy. MR. BIRMINGHAM: They're -- I think everybody's cards are on the table. And nobody is proposing that that be the ceiling.

HEARING OFFICER DEL PIERO: I understand no one is proposing it at this point. I don't think he was either. He was asking a supposition. We can have the question read back. MR. BIRMINGHAM: I guess my question is: If no
```

instead
15 it's being proposed that that be a floor, what's the
16 relevance of the question?
17 HEARING OFFICER DEL PIERO: Well, because it's
1 8 within the range that Dr. Hardy has commented on.
19 Overruled.
Dr. Hardy, do you recall the question, sir?
DR. HARDY: Would you please repeat it, sir?
MR. ROOS-COLLINS: Let me restate it. I will
withdraw my former question.
Q BY MR. ROOS-COLLINS: Have you ever made a
recommendation in a regulatory proceeding for a flow
0214
regime which amounted to a zero percentile flow regime?
A I would have to say the answer to that would be
yes.
Q Which stream?
A I believe, if I'm understanding your question and
what's being referred to, is many flow recommendations
that have been made on many studies represent flows
that are always equal or exceeded }100\mathrm{ percent of the
time, which is according to this table the same as your
zero percentile.
Q Let me put the question to you again. I don't
think we're discussing the same subject.
Have you ever recommended to a regulatory agency
that it establish as a ceiling a flow regime which is
the zero percentile flow?
A As a ceiling, no.
Q Thank you. Dr. Morhardt, now questions for you.
You suggest that there are more trout in Rush Creek
than in most studied eastern Sierra streams; is that
correct?
A BY DR. MORHARDT: That's correct.
Q What's the relevance of that observation to the
reestablishment of the historic fishery in Rush Creek?
A It suggests to me that the amount of flow that has
been in Rush Creek has been sufficient to allow the
0 2 1 5
0 1
0 5 ~ Q ~
0 6 ~ A ~ I n d e e d ~ i t ~ i s .
0 7 Q Do you have any estimate of the fish population in
08 Rush Creek before 1941?
09 A No, I do not.
10 Q If it were ten times the average in the Owens
11 Basin, what relevance would the comparison of the Owens
12 Basin have?
13 A None.
14 Q On page 72 of your written testimony, you state,
15 quote, the models suggest that both regulation and
16 diversion of flow as they exist in the eastern Sierra
1 7 Nevada streams had at worst no adverse impact.
Is it your testimony that the diversion and
regulation of flow by the City of Los Angeles between
1 9 4 1 ~ a n d ~ 1 9 8 3 ~ h a d ~ n o ~ a d v e r s e ~ i m p a c t ~ t o ~ t h e ~ f i s h e r y ~ i n
Rush Creek?

```
```

 A No. It's not. The -- the statement is based on
 the study that we did looking at streams that had had
 water in them continuously, but streams that had been
 of all different sizes, and in some cases diverted
 0 2 1 6
 rather substantially.
 And in that case, there is no -- looking at my
 Figure Number 1, there is no relationship between the
 flow and the fish populations. None of these streams,
 however, were dry completely, of course.
 Q I'll get to the relationship between flow and
 population later in my cross-examination. For the time
 being, let's focus specifically on Rush Creek.
 Do you agree that the regulation and diversion of
 flow by the City of Los Angeles between 1941 to 1983
 had an adverse impact on the fishery in Rush Creek?
 A Yes, I do.
 Q On page 72, you also state, quote, In some of the
 models, regulation and diversion of flow had a Ô
 numbers and
biomass, unquote.
Given your answer, you would agree that that
enhancement did not occur in Rush Creek between }194
and 1983?
A I would agree with that.
Q And you would agree with respect to Lee Vining
Creek as well, wouldn't you?
A Not necessarily with respect to Lee Vining Creek.
The populations in Lee Vining Creek as shown on Figure
1 of my testimony show a range of populations which are
0217
well within the range of those of the other streams in
the eastern Sierra.
Q What was the fish population in Lee Vining Creek
before 1941?
A I don't know.
Q Did L.A. periodically dry up Lee Vining Creek
between 1941 and 1983?
A I don't know. But I don't think they dried it up
periodically during the years just prior to the time
these samples were taken, which were in 1984 and 85.
Q My question concerned the period 1941 to 1983?
A I don't know anything about the flow regime in Lee
Vining Creek during that period.
Q Let's discuss the relationship between flow and
fish population. In going through your testimony, I
found the following phrases to describe that
relationship.
Quote, very little correlation, unquote, page 71.
Quote, lack of relationship, unquote, page 71.
Quote, not the determinant, unquote, page 72.
Quote, nearly complete lack of relationship,
unquote, page 72.
And, quote, no scientific evidence, unquote, to
show a relationship, page 73.
For the purpose of this cross-examination, could
0218
you offer me a term which describes your opinion as to
the relationship between flow and fish population in

```
```

 the eastern Sierra Nevada?
 A There does not appear to be any relationship at
 all above a very small flow based on the data collected
 by Deinstadt.
 Q No relationship at all over a threshold flow?
 A Clearly, there has to be some water in the stream
 before fish can live there. But of the streams that
 were sampled, some had very low flows.
 And as one can see by looking at Figure 1, even
 some of those very low-flow streams had very high fish
 populations.
 Q In the studies you conducted, what's the
 threshold?
 A I don't know. I think that there are -- none of
 these streams had flows lower than three cfs. And in
 some of the streams of three cfs, there are fairly
 large populations.
 The determinant here is that these streams also
 had some pool habitat. And pool habitat tends not to
 be influenced by flow at all or very little.
 Consequently there was indeed water of some depth in
 the mean with low flow.
 Q Let's look at Figure 2 of your written testimony.
 0219
 Do you have that in front of you?
 A I will momentarily. I do.
 Q The highest data point shown in Figure 2, which I
 interpret to mean the highest number per meter of fish,
 occurs very close to the left hand margin of that
 figure; is that correct?
 A That's correct.
 Q Now, the X axis in that figure is cubic meters per
 second?
 A That's correct.
 Q One cubic meter per second corresponds roughly to
 36 cubic feet per second?
 A That's correct.
 Q Let's focus on that triangle, which is the peak in
 Figure 2. That appears to be about one fifth of one
    ```
ô
8
\begin{tabular}{ll}
17 & A Approximately. \\
18 & \(Q\)
\end{tabular} Approximately seven cfs of flow? \(\quad\) That's probably correct.
```

and that the other half was unaccounted for.
A That is correct.
Q Do you have an opinion as to the limiting factors
that exist today in Rush Creek?
A I don't have a very strong opinion.
Q Does that mean that you are not confident in your
opinion?
A That's correct. I believe that there is very
little data for the entire eastern Sierra on what
factors are limiting to fish populations.
Q This Board has announced its intention to make a
water rights decision of permanent effect by mid next
year. By mid next year we're not going to be in much
better shape in terms of understanding limiting
factors.
Given that assumption, what recommendation do you
have to this Board for identifying limiting factors
which may exist today in Rush Creek?

```
```

 A Well, I think it's unlikely that anyone is going
 to be able to identify the limiting factors in Rush
 Creek between now and then. I suspect that they are
 related to the availability of food, but none of the
 data I have seen clarifies that very much.
 Q So would you recommend that this Board not attempt
 to identify limiting factors in Rush Creek before
 issuing its water rights decision?
 A I don't believe the Board is actually going to be
 able to identify the limiting factors. I would
 recommend that they try to. It would be very nice to
 know what they are.
 Q What's the basis for your belief, if any, that
 weighted usable area is a limiting factor in Rush Creek
 today?
 A Are you suggesting that I believe that it is?
 Q Let me put the question to you more directly. Is
 weighted usable area a limiting factor in Rush Creek
 today?
 A I do not know.
 Q Are you familiar with the 1990 agreement between
 the parties in the Mono Lake cases?
 A Somewhat.
 Q Let me read from paragraph three in that
 agreement.
    ```
                                0222
```

 "Conditions which maintained and benefited
 the fisheries in Rush and Lee Vining Creeks include,
 but are not limited to," and then it goes on to list
 one, two, three, four, five, six different conditions
 which benefited the fisheries before L.A. began
 diversions in 1941.
 Do you have an opinion whether those six
 identified conditions, in fact, did benefit the
 fisheries before 1941?
 A Would you mind reading them to me, please?
 Q Stream flow and instream conditions.
 A That's item number one?
 Q Number one.
 A I'm sure that when there was no stream flow in the
 stream, the fish population suffered tremendously.
    ```
\begin{tabular}{|c|c|}
\hline 16 & Q In the interest of time, why don't we do this in a \\
\hline \multicolumn{2}{|l|}{} \\
\hline 18 & Yes, means that you agree that it benefited the \\
\hline 19 & fishery. No means that you disagree. \\
\hline 20 & \(A \quad Y e s\). \\
\hline 21 & Q Benthic organisms and nutrients, number two. \\
\hline 22 & A Yes \\
\hline 23 & Q Riparian and canopy vegetation, species, \\
\hline \multirow[t]{3}{*}{24
25} & structure, density, distribution, location and acreage? \\
\hline & A I'm not convinced of that \\
\hline & 0223 \\
\hline 01 & Q Channel configuration, bed composition and \\
\hline 02 & structure? \\
\hline 03 & A Yes \\
\hline 04 & Q Contribution of water benthic organisms and \\
\hline 05 & nutrients of springs. \\
\hline 06 & A I'm not convinced of that. \\
\hline 07 & Q Water temperatures and other water quality \\
\hline 08 & parameters? \\
\hline 09 & A Perhaps. \\
\hline 10 & Q Is there a relationship between flow and any of \\
\hline 11 & the conditions which you agree benefit the fisheries? \\
\hline 12 & A There's certainly a relationship between the first \\
\hline 13 & one, which is flow. The others are related to a point \\
\hline 14 & with flow. \\
\hline 15 & Q You would agree that flow is related to riparian \\
\hline 16 & vegetation? \\
\hline 17 & A Not necessarily. In many streams in the eastern \\
\hline 18 & Sierra they are almost completely diverted. The \\
\hline 19 & riparian vegetation is intact, as much as I can tell. \\
\hline 20 & Q In Rush Creek is there a relationship between flow \\
\hline 21 & and riparian vegitation? \\
\hline 22 & A Well, Rush Creek is a special case, because it was \\
\hline 23 & completely dried up, and so indeed there is. But I \\
\hline 24 & doubt that there's any sort of a functional \\
\hline 25 & relationship between it now. I doubt that you could 0224 \\
\hline 01 & draw any sort of a regression relating the amount of \\
\hline 02 & riparian vegetation to the amount of flow along the \\
\hline 03 & stream. \\
\hline 04 & Q Dr. Morhardt, I understand it's a special case, \\
\hline 05 & but it is the focus of this proceeding. And I take it \\
\hline 06 & from your answer that you do not believe that there's a \\
\hline 07 & functional relationship between flow and riparian \\
\hline 08 & vegetation in Rush Creek; is that correct? \\
\hline 09 & A There may be in parts of it, particularly in the \\
\hline 10 & meadowlands. \\
\hline 11 & Q Have you reviewed the riparian vegetation model, \\
\hline 12 & which is described in the environmental impact report \\
\hline 13 & and set forth as an attachment to that report? \\
\hline 14 & A Is that the Taylor model? \\
\hline 15 & Q I don't recall its name. Have you reviewed any \\
\hline 16 & such model contained in or attached to the draft EIR in \\
\hline 17 & this proceeding? \\
\hline 18 & A I have reviewed the Taylor model. \\
\hline 19 & Q Do you have an opinion about it? \\
\hline 20 & A Yes. I don't think it's valid. \\
\hline 21 & Q Is there any relationship between flow and channel \\
\hline 22 & configuration in Rush Creek? \\
\hline 23 & A Yes. \\
\hline
\end{tabular}
```

 24 Q Do you agree that channel configuration can effect
    ```
25 the fishery?
    A Yes, it can.
    Q If there's a relationship between flow and channel
    configuration, and in turn, if there's a relationship
    between channel configuration and fishery, how can you
    say there's no relationship between flow and fishery?
    A I'm saying, based on the data that were collected
    across eastern Sierra streams by Deinstadt, there in
    fact is no relationship between flow and trout
    population.
    Q And I'm asking you specifically about Rush Creek.
    A I don't know if there will turn out to be one or
    not. From what I've seen so far, there is a very
    little one.
            If you look at my Figure 1, for example, you'll
    see that over the range of flows that existed during
    the period of time we were sampling fish, which is
    about somewhere between 19 cfs and 11 cfs , there is no
ô

And if you look at -- I looked at the date that Dr. Meesic presented in his testimony, there have been higher flows since then.

From what \(I\) can tell by looking at that, there has not been any sort of significant change in the fish population. So I think it's quite possible there will not be.

0226

01

01
02
    HEARING OFFICER DEL PIERO: Mr. Roos-Collins, your
    initial 20 minutes are up.
            MR. ROOS-COLLINS: I request an additional ten
    minutes of time.
    HEARING OFFICER DEL PIERO: Based on?
    MR. ROOS-COLLINS: The complexity of these issues
    and the importance of Dr. Morhardt's testimony.
    HEARING OFFICER DEL PIERO: Fine.
    Q BY MR. ROOS-COLLINS: Dr. Morhardt, let's turn now to
    the Deinstadt reports to which you have referred and
    which are cited in your written testimony.
            I'm distributing now the reports which I believe
        are your Deinstadt reports. And I ask that they be
        marked Cal-Trout Exhibits 23 and 24.
                (Cal-Trout Exhibits 23 and 24
                were marked for identification.)
    MR. ROOS-COLLINS: 23 will be a survey of fish
    populations in the streams of the Owens River drainage
    1983 to 84, DFG Administrative Report number 85-2.
            MR. BIRMINGHAM: What was the Cal-Trout
    identification for this?
            MR. ROOS-COLLINS: Number 23.
            MR. BIRMINGHAM: Excuse me, counsel, we weren't
    given 23.
    MR. ROOS-COLLINS: It will be there. And 24 will River Drainage, 1985, DFG Inland Fisheries Report
number 86-3.
Do you have these reports in front of you, Dr. Morhardt?

DR. MORHARDT: I do.
HEARING OFFICER DEL PIERO: I don't think these documents are the same. One is the DFG 84 document, and the other one is an 85 document?

MR. BIRMINGHAM: I've been given two that are the same.

HEARING OFFICER DEL PIERO: Which year do you have?

MR. BIRMINGHAM: I've got 83-84.
MR. ROOS-COLLINS: He's in the market for a trade.
HEARING OFFICER DEL PIERO: We have -- I know we have excess copies at the head table. I'm sure
Mr. Birmingham is welcome to have one of the -- what do you have? You've got 185?

MR. BIRMINGHAM: I've got 85-2.
HEARING OFFICER DEL PIERO: Do you have an 83-84 to give to Mr. Birmingham?

MR. BIRMINGHAM: That is 83-84.
HEARING OFFICER DEL PIERO: Pardon me? Oh, you're talking about the administrative numbers 85-2. You've

0228
got 83-84. Do you have the 85 one?
MR. CANADAY: Mr. Del Piero?
HEARING OFFICER DEL PIERO: Yes.
MR. CANADAY: When exhibits are presented to staff and the Board, we need at least ten copies so that the Board members --

HEARING OFFICER DEL PIERO: Yes, I know.
MR. ROOS-COLLINS: Mr. Canaday, I believe the ten copies were presented to the Board and staff.

HEARING OFFICER DEL PIERO: These are supplemental copies?

MR. ROOS-COLLINS: I'm sorry. Mr. Del Piero, I've lost track of how many copies were handed out. We made a total of 15 of each exhibit. Apparently they have not been distributed to the Board --

HEARING OFFICER DEL PIERO: Have you got yours?
MR. BIRMINGHAM: I've got two separate reports.
I'm happy. \(\hat{O}\)
OFFICER DEL PIERO: Have a seat folks.
I'm trying to make sure that we get folks to start sitting down, so that \(I\) can figure out what is going on here. Then perhaps we can eventually get out of here tonight.

Now, Mr. Canaday, how many copies did you get?
MR. CANADAY: We don't know.
01 HEARING OFFICER DEL PIERO: We don't know. We'll
02 clean it up later on. Okay? Mr. Roos-Collins, you may
03 be obliged to produce additional copies for us in the
them up at the end. Why don't you proceed with your cross-examination?

MR. ROOS-COLLINS: My apologies for the confusion.
HEARING OFFICER DEL PIERO: That's quite all
right.
Q BY MR. ROOS-COLLINS: Dr. Morhardt, do you have the
```

1 1 Department of Fish and Game report 85-2, which is
12 Cal-Trout Exhibit 23 in front you?
13 A Yes, I do.
1 4 ~ Q ~ A n d ~ d o ~ y o u ~ h a v e ~ t h e ~ D F G ~ r e p o r t ~ 8 6 - 3 , ~ w h i c h ~ i s
15 Cal-Trout Exhibit 24 in front of you?
16 A I do.
1 7 Q Are these Deinstadt reports to which you referred
18 in your written testimony?
19 A Yes.
20 Q What was the purpose for the reports?
A They were a synoptic study of the fish populations
in the eastern Sierra.
What was the purpose for the reports?
A It was to examine the fish populations in streams
throughout the eastern Sierra.
0230
Q Let me read to you from the introduction, page
three, of Cal-Trout Exhibit 24.
"A major part of the legislation was directed
towards improving wild trout angling in California by
identifying and designating streams in which fishing
quality could be improved through the use of catch and
release angling regulations.
The inventory requirement of the legislation not
only provided an opportunity to identify potential
quality wild trout streams, but provided the impetus
needed to collect fish population data required to more
effectively manage and protect a major segment of
California stream resources."
Is that a fair statement of the purpose for that
report as you understand it?
A I presume. They were the ones who decided what
their purpose was.
Q And do you believe it is consistent with the
purpose for this report to conclude there is no
relationship between flow and fish population?
A The data in the reports speak for themselves.
Q Okay. Fish population data are typically
collected by snorkeling or electrofishing or both; is
that correct?
A Correct.
0 2 3 1
Q The fish population data contained in E.A.'s
studies for the Mono Lake tributaries were collected by
snorkeling; is that correct?
A No. It's not. They were all collected by
electrofishing. They were using the same techniques as
used by Deinstadt.
MR. BIRMINGHAM: We had long debates about that in
front of Judge Finney, and you were very supportive of
that technique, as I recall.
MR. THOMAS: Are you testifying here,
Mr. Birmingham?
HEARING OFFICER DEL PIERO: Gentlemen, gentlemen,
the Court Reporter, first of all, isn't going to
recognize any of you. And second of all, it's four
o'clock.
Proceed Mr. Roos-Collins.
Q BY MR. ROOS-COLLINS: Let's turn to page 16 of
Cal-Trout Exhibit 24.

```

\section*{19 A Could you tell me which of those two reports that}
\(\varnothing\)
\begin{tabular}{|c|c|}
\hline 21 & Again, that's DFG report number 86-3, dated April \\
\hline 22 & 1986. \\
\hline 23 & A Thank you. What page? \\
\hline 24 & Q Page 16. This appears to be a description of Ash \\
\hline 25 & Creek, the first creek included in this report; is that
\[
0232
\] \\
\hline 01 & correct? \\
\hline 02 & A Yes, it is \\
\hline 03 & Q It shows characteristics including length, width, \\
\hline 04 & elevation, gradient and erodiant bank; is that correct? \\
\hline 05 & A Correct \\
\hline 06 & Q How would you characterize the data set forth in \\
\hline 07 & this report as to the characteristics of the stream? \\
\hline 08 & MR. BIRMINGHAM: Objection. Ambiguous. \\
\hline 09 & MR. ROOS-COLLINS: Is this data general? \\
\hline 10 & HEARING OFFICER DEL PIERO: Sustained. \\
\hline 11 & MR. ROOS-COLLINS: My apologies. \\
\hline 12 & HEARING OFFICER DEL PIERO: Go ahead and ask. \\
\hline 13 & DR. MORHARDT: Is this data general? Some of it's \\
\hline 14 & quite specific. \\
\hline 15 & Q BY MR. ROOS-COLLINS: Would you agree that the data \\
\hline 16 & set forth in this report constitutes a summary of the \\
\hline 17 & characteristics along the entire reach of each stream \\
\hline 18 & studied? \\
\hline 19 & A The entire reach is about 100 meters long. And \\
\hline 20 & yes, it does. \\
\hline 21 & Q Yes, and some of the other creeks are much longer \\
\hline 22 & than Ash Creek; isn't that correct? \\
\hline 23 & A No, the areas sampled are about 100 meters long, \\
\hline 24 & and the descriptions shown in this report are of that \\
\hline 25 & hundred meter section. \\
\hline & 0233 \\
\hline 01 & Q Let me put the question to you more directly. On \\
\hline 02 & the basis of the data contained in Cal-Trout Exhibits \\
\hline 03 & 23 and 24, are you confident that you can determine \\
\hline 04 & which of these streams are comparable to Rush Creek? \\
\hline 05 & A I've made no attempt to do so. \\
\hline 06 & Q So it's quite possible that every creek in these \\
\hline 07 & exhibits are not comparable to Rush Creek, in terms of \\
\hline 08 & habitat quality? \\
\hline 09 & A Well, these are basically all of the streams that \\
\hline 10 & exist along east side of the Sierra. So to the extent \\
\hline 11 & that Rush Creek is in some way related to those \\
\hline 12 & streams, they must be comparable to it. However, \\
\hline 13 & probably every single one of these streams is unique in \\
\hline 14 & some respect. \\
\hline 15 & Q Let's turn to Table Three on page 14 of this same \\
\hline 16 & exhibit, Cal-Trout Exhibit 24. That appears to list \\
\hline 17 & the creeks which are contained in the study; is that \\
\hline 18 & correct? \\
\hline 19 & A Yes. \\
\hline 20 & Q Which of these creeks is most like Rush Creek in \\
\hline 21 & its habitat quality? \\
\hline 22 & A I wouldn't care to venture that. I don't know. \\
\hline 23 & Q Which is most like Lee Vining Creek? \\
\hline 24 & A In what respect? \\
\hline 25 & Q In terms of habitat quality? \\
\hline
\end{tabular}
```

 A I can't say. I have seen virtually all these
 streams, and I find it difficult to make that sort of a
 conclusion.
 Q So you are comparing Rush Creek and the creeks
 described in these reports without having any specific
 knowledge as to how the habitat qualities compare?
 A I have a great deal of specific knowledge. These
 streams, however, if you want to make a comparison on
 any sort of specific details, had I the data in front
 of me, I could do that.
 These, however, are all of the streams on the east
 slope of the Sierra, essentially.
 Q Let's focus, then, on riparian vegetation.
 A All right.
 Q I believe you previously testified that riparian
 vegetation has an impact on the fishery.
 A I don't believe I did.
 Q Do you agree with me that riparian vegetation has
 an impact on a fishery?
 A I believe it can, but I don't think necessarily it
 Q Which of the conditions that benefited the pre-41
 fishery as listed in the 1990 agreement do you believe,
 in fact, most benefited the fishery?
 MR. BIRMINGHAM: Perhaps the witness could have a
 0235
 copy of the 1990 agreement so that he can see the
 conditions laid out in that agreement.
 HEARING OFFICER DEL PIERO: Mr. Roos-Collins, do
 you have a copy available?
 MR. ROOS-COLLINS: I do, Mr. Del Piero. I
 withdraw that question in the interests of time.
 Q BY MR. ROOS-COLLINS: Dr. Morhardt, let me ask you
 this. You previously agreed that channel configuration
 has an effect on the fisheries; is that correct?
 A Yes, it does.
 Q Which of the creeks listed in the Cal-Trout
 Exhibit 24 has a channel configuration most like Rush
 Creek?
 A I don't know.
 Q Does it bother you that you are testifying that
 these creeks are comparable to Rush Creek without
 having an understanding of the channel configurations?
 MR. BIRMINGHAM: Objection. Argumentative.
 Misstates the evidence.
 HEARING OFFICER DEL PIERO: Actually, I'm going to
 allow that. I don't think it's argumentative, and I
 don't think it misstates what was just elicited in
 terms of a response. You can go ahead and answer that,
 Dr. Morhardt.
 DR. MORHARDT: I haven't testified that they're
 0236
 comparable, that Rush Creek is comparable to these
 streams, I don't believe.
 But I would say that if there are many streams that
 are comparable to Rush Creek, it must be these, because
 these are all of the streams that are along the eastern
 slope of the Sierra.
 I think there are many similarities between
 these streams and Rush Creek. And I have not seen any

```
```

other streams that are closer to Rush Creek than this
subset of streams.
Q Let me ask a related question. Would you
recommend to this Board that a comparison between Rush
and Lee Vining Creek on the one hand and other eastern
Sierra streams on the other, figure into its
determination of the flow regime remedy in this
proceeding?
A I certainly would. I think that it's the best
possible set of data in order to make some
determination of about what might happen in Rush Creek.
Q Given what I characterize as the superficiality of
data as to stream characteristics in these reports, and
given your knowledge of those same stream
characteristics, how would you recommend that the Board
go about collecting that data by summer of 1994?
A Well, that's a difficult question. I think if the
0237
Board decided that what it wanted to do was to look for
stream sections that were comparable to sections of
Rush Creek, it could do so.
Each section of Rush Creek has certain
characteristics which are bound to be duplicated in
sections of other streams. And I would imagine that it
would be possible to find sections of other streams
that had physical characteristics that were essentially
identical to the ones that the Board thinks are going
to occur in Rush Creek after it's restoration has
matured.
And by doing that, I would think you could make a
fairly strong guess about what the fish populations
would look like by looking at these comparable
sections.
Q Can you recommend a scientific methodology which
this Board could use, first, to identify a comparable
stream; and second, to evaluate the limiting factors in
that stream; and third, to compare those limiting
factors with the limiting factors in Rush Creek?
A I think I wouldn't concern myself with the

```
to

23
24
find stream sections that resembled what people think Rush Creek will resemble following restoration, and then simply see how the riparian vegetation and the

0238
```

fish populations fair or, in fact, what they're like.
I wouldn't do it on a whole stream basis, because
there are no streams that are equivalent along their
entire lengths to Rush Creek, but there certainly are
sections that are.
Q One final question about these exhibits and then
I'll leave them behind. You have described your
personal knowledge of these streams.
Does any of these streams have a stretch
comparable to the bottomlands that existed in Rush
Creek before 1941?
A I don't think so. The only streams that seem to
me to be comparable in some respects are perhaps
Mammoth Creek. But I've been thinking about this, and
I don't think there are any that are identical to it.
Q Let me ask you finally about the --
HEARING OFFICER DEL PIERO: Last question,
Mr. Roos-Collins. This is your last question.
Q BY MR. ROOS-COLLINS: Thank you. Let me ask you
finally about the last sentence in your written
testimony.
Quote, To the best of my knowledge, there is no
scientific evidence that increasing either flow or
weighted usable area in any eastern Sierra stream has
ever produced a larger trout population, and I doubt

```
                            0239
that it is likely to do so in Rush Creek, unquote.
            Is it your opinion that the flow regime which
    existed before the first injunction in Mono Lake cases
    produced a fish population comparable to the fish
    population today?
    A Well, there was no flow before then, so obviously
    not.
            MR. ROOS-COLLINS: I have no further questions.
            HEARING OFFICER DEL PIERO: Thank you, very much.
    Miss Scoonover?
            MS. SCOONOVER: I have no questions.
            HEARING OFFICER DEL PIERO: You have no
    questions? Anyone else have any questions of these
    folks? Mr. Frink?
            Oh, I'm sorry. Mr. Haselton's with us. Good
    afternoon, sir.
            MR. HASELTON: Thank you. Dr. Hardy, Dr.
        Morhardt. It's been a long day, I know. I hope you
        find me refreshingly brief.
            First of all, Dr. Hardy, \(I\) have a pre-existing
    condition of statistical phobia, so I probably won't be
    asking you any questions for fear I may not understand
    a lot of your answers.
                    Dr. Morhardt, I have a couple of questions,
    and they relate to the Upper Owens River. But before
what your target was, if you will.
```

 CROSS-EXAMINATION BY MR. HASELTON
 Q First of all, it was your assignment or charge or
responsibility to compare what I'm going to call the
variable of flow to fish population, and specifically
brown trout; is that true?
A BY DR. MORHARDT: Well, what I'm reporting on is the
results of a study that I did for the Electric Power
Research Institute that looked at all of the variables
for which we had data, and attempted to determine what
their effects were on brown trout.
Q Okay. And is not flow -- it's one of several if
not many variables, I think Mr. Roos-Collins did a
pretty good job of listing a lot of the variables that
comprise the stream system.
And is it also -- it's the combination and the
interrelationship of these variables that actually
define or describe the individual systems?
A I'm sure that's true.
Q I'm relating back to the difficulty of trying to
specifically identify and compare individual stream
They may have all these variables, but because of
the different interrelationships between them, they are
0241
unique.
I will venture a little bit into statistics. In
order to strengthen and really -- this is a truly
objective question. In order to strengthen analysis of
a single variable, such as flow, between that and
another factor, such as brown trout, isn't it important
to find a group of systems that are similar, that have
a similar set of variables that relate to each other in
a similar way, to isolate the one variable you are
looking at, and that is flow?
A I don't think that's true. I think that -- oh.
Q Go ahead. Keep going.
A That's it.
Q Okay. Let me ask it a different way then. In
order to isolate a variable and to strengthen the
testing of that variable, if you will, doesn't it
assist what you're trying to do to have similar systems
with similar variables relating to each other in a
similar fashion?
A Let me answer the question this way. If you had a
series of streams that were essentially identical, you
would have a much greater chance of being able to
explain the factors which control the fish population.
Progression models of this type that are done on a
few streams that are quite similar, or even on the same
0242
stream, characteristically can explain more of the
variance than we are able to.
Q Okay. Thanks. Are you familiar with the Upper
Owens River?
A I have walked along it, yes.
Q Okay. We talk about the Upper Owens River, you
know, from Big Springs down to Crowley. Have you
walked along the area up, let's say, near Big Springs,
the Albert's Ranch, Arcularius Ranch, in that area?
A Yes, I have.

```
```

 1 1 ~ Q ~ W o u l d ~ i t ~ b e ~ s a f e ~ t o ~ s a y ~ t h a t ~ i n ~ o u r ~ g e n e r a l
 discussion of eastern Sierra streams that the Upper
 Owens is a unique system?
 A Yes, I think so.
 Q And to take that maybe a step further, do you need
 primarily spring fed, as opposed to snow melt?
 A Yes.
 Q Low gradient?
 A Low gradient as soon as it gets down to --
 Q Yes.
 A -- Arcularius Ranch.
 Q That's true. That's true. And then is it safe
 for me or anyone to state that although the Rush and
 Lee Vining, they might -- Rush and Lee Vining creeks
 may have all the variables that comprise a system that
 0243
 are also contained in Owens River, they are
 significantly different because these variables are
 arranged differently?
 A Well, in particular, I agree with you completely.
 And I think, in particular, what the Upper Owens River
 has is Crowley Lake connected to the bottom of it. So
 it has a gigantic reservoir of food and a good place
 for large fish to grow.
 Q And I guess then my last question, and what I'm
 trying to find out, then, is it correct to state, then,
 that -- to isolate one variable, flow, for the purpose
 of comparing fish population between, say, Rush and Lee
 Vining Creek and the Owens River, is statistically
 weak? I mean, because they are different systems and
 perhaps even not relevant?
 A Well, the way that flow --
 Q You want me to rephrase the question?
 A Yes, yes. I'm having trouble grasping the
 question.
 Q Maybe if I put it in a series of statements and
 finish with a question.
 There was some questioning by, I think it was
 Mr. Dodge, relating to why you didn't include the Owens
 Ô

```
the

01 include in your analysis were somewhat grouped or
similar, okay? And the Owens River is unique, and it
is different, because it is stream fed.
            And to compare, knowing that both those systems
        may have all the same variables, but they're arranged
        differently, gradient, you know, the source of water,
        what have you, but they're related differently. And
        that's what comprises the different systems. That's
        what makes them unique.
            To extract one element such as flow for the
        purpose of saying, well, one system has more fish than
        the other because of flow, is not really very strong
        statistical effort.
        A It's a completely legitimate statistical question
        to do that. The first thing one does in looking at any
        variable is to look at a single regression or
        correlation just using that variable.
            Usually, if that variable is important to the
        system, there will be some sort of a discernible
        correlation with it, even though it may be strengthened
        substantially by using multiple regression and adding
        other variables.
            When one looks at tables like this where there's
        essentially no correlation with one of the variables,
        it's very unlikely that adding other variables and0245
    correcting for other variables is going to cause that
    one to become important.
            In fact, the exercise we went through in the
effects of flow regulation paper, which we've been
talking about, was to do just that, to try to isolate
all of the other variables so that we could see,
correcting for all of those, we could see what affect
flow had. And, in fact, it was impossible to do that.
Q The Upper Owens and Rush and Lee Vining, they're
two different systems, and to do exactly what you just
said wouldn't show a correlation at all.
A Well, it didn't, so --
Q Yeah, it did. Okay. Thank you.
    HEARING OFFICER DEL PIERO: Thank you very much,
sir. Mr. Frink?
            MR. FRINK: Yes, Mr. Del Piero. I have a few, and
    I believe Mr. Herrera and Mr. Canaday will have
    substantially more.
                CROSS-EXAMINATION BY THE STAFF
    Q BY MR. FRINK: Dr. Hardy, I realize this is a
    complicated subject, and a good bit of it is new to me,
    so I'll try and keep my questions simple, and hopefully
    the answers can be relatively simple as well.
            On page 58 of your written testimony, you stated
        that, "The flows which protect 80 to 85 percent of the0246
    maximum potential habitat are typically targeted under
    multiple use considerations."
    For purposes of my question, I'd ask that you
would assume that our goal isn't -- isn't any sort of
```

balancing between multiple use considerations, but
rather that our goal is to restore and maintain some
hypothetical pre-diversion fishery condition.
Now, assuming that you are under specific
directions to restore and maintain some hypothetical
pre-diversion fishery, would you first attempt to
assess the best available information on what type of
fishery existed under pre-diversion conditions?
A BY DR. HARDY: Yes, sir, and the conditions which
produced that fishery.
Q Okay. Once you've attempted to identify the type
of -- of fishery that existed and the conditions that
produced that fishery, is one of those conditions that
you would look closely at a determination of an
appropriate flow regime?
A Yes, sir.
Q And I assume in determining such a flow regime you
would look at the need for appropriate flushing flows;
is that correct?
A Yes, sir.Ô
you also attempt to specify a minimum

```
    flow rate which must always be present in order to
```

 flow rate which must always be present in order to
 protect the fishery?
 protect the fishery?
 A Yes, sir.
 A Yes, sir.
 Q Now, once you've determined an appropriate
 Q Now, once you've determined an appropriate
 flushing flow or series of flushing flows, and once
 flushing flow or series of flushing flows, and once
 you've determined a minimum flow rate which must always
 you've determined a minimum flow rate which must always
 be met, would you establish any sort of other flow
 be met, would you establish any sort of other flow
 requirements in order to reestablish and maintain the
 requirements in order to reestablish and maintain the
 pre-diversion fishery?
 pre-diversion fishery?
 A I think the answer I would give to that is
 A I think the answer I would give to that is
 perhaps, again, with the way you stated the question,
 perhaps, again, with the way you stated the question,
 I'm not sure what you would -- what you were trying to
 I'm not sure what you would -- what you were trying to
 target as your -- your baseline fisheries condition,
 target as your -- your baseline fisheries condition,
 what constituted -- I don't know -- I'm not sure I
 what constituted -- I don't know -- I'm not sure I
 understand what that target is.
 understand what that target is.
 If you have adequate flushing flows, and you've
 If you have adequate flushing flows, and you've
 established a minimum flow that you think would protect
 established a minimum flow that you think would protect
 the fisheries, then one answer I can give is that
 the fisheries, then one answer I can give is that
 you're already there. And I'm not sure then what
 you're already there. And I'm not sure then what
 additional flows you might be referring to.
 additional flows you might be referring to.
 Q Okay. I believe the way that you defined the
 Q Okay. I believe the way that you defined the
 minimum flow as you have used the term in the flow
 minimum flow as you have used the term in the flow
 recommendations that you've made in the past, and I
 recommendations that you've made in the past, and I
 believe in this instance is a flow that will always be
 believe in this instance is a flow that will always be
 present; is that correct?
 present; is that correct?
 0248
 A Yes, sir.
 Q Now, in the absence of a significant storage
 reservoir upstream, how would you determine a flow that
 would always be present in a given stream?
 A Well, one of the first things you would do is look
 at the flow hydrographs and look at what the flow
 duration curves existed for that stream, and then if
 you're looking at it, in my mind, from the issue of
 fisheries, what is the types of habitats that are
 there, and what flows, vis-a-vis, something like
 weighted usable area --
 Q My question is simpler than that. To determine
    ```
```

 13 the flow that would always be present in the absence of
 a reservoir that could provide storage releases,
 wouldn't you look at the lowest recorded flow of
 record?
 A That would be one way to do it, yes. That one
 lowest flow would be an observation for the existing
 period of record of the simple one lowest flow you
 have.
 Q Okay. And in the absence of a storage reservoir,
 the only way you could be relatively sure that your
 minimum flow requirement would always be present would
 be to set it at the lowest recorded flow; isn't that
 correct?
 0249
 A In terms of the period of record, yes, sir.
 Q So if all you were to do is to establish flushing
 flows and a minimum flow, we could short circuit this
 process considerably, couldn't we? We could look just
 at flushing flows, and then look at the lowest recorded
 flow of historic record?
 A That would be one approach, yes, sir.
 Q Do you think that would be an adequate approach to
 reestablish and maintain a pre-diversion fishery?
 A Probably not.
 Q What more would you do?
 A Well, I think -- I'm not advocating flows that
 represent the simple one lowest flow that would have
 existed.
 I think that you would want flows someplace a bit
 higher than that, especially if you had some inference
 of what those flows may have done to protect your
 fisheries.
 Q So above and beyond establishing flushing flows
 and a minimum flow rate that would always be present,
 you would attempt to establish some other flow regime
 aimed at protecting the fishery; is that correct?
 A Right. If that minimum is as you state the single
 one observed lowest flow from the period of record.
 Q Now, you indicated, I believe in response to
 O
E

```

0250
please?
A Briefly?
Q Very briefly, yes.
A I think in the scoping process, one needs to,
first of all, set the objectives of the study.
Secondly, I believe from a political arena, you need to
make sure that all the players involved are at the
table in the decision making process from the
beginning.
            I think you then go to look at the conditions of
the particular stream system you are dealing with, identify the appropriate target organisms by which you will evaluate your instream flows.

And then identify whether you suspect physical habitat is limiting and/or other considerations, such as water quality, temperature, other factors that need to be considered.

And then proceed forward with the actual on-the-ground study design in terms of the specific delineation of reaches, and how many cross-sections, for instance, you would want to target to collect, the flow range anticipated to be in issue, so that you can optimize your data collection within that area, because we're always limited by time, personnel and budget constraints. And then simply proceed forward with the appropriate data collection methods.

Then the analytical methods, the review of those, and then move forward with the interpretation of all of the study elements in making up your flow recommendation.
Q You mentioned earlier that -- I believe it was 1981, maybe it was 1983, that you reviewed some sort of element of one of these studies, maybe the initial scoping of one of these instream flow studies, and provided comments to LA DWP; is that correct?

0252
01 A If I am thinking of the same thing you are, I
02 believe it was in reference in about 1989 or so to the 03 Rush Creek IFIM.
04 Q And that was in the preliminary phase of the Rush
05 Creek studies?
06 A No. I believe at that point, if my memory serves
```

me right, it was the initial draft report for the Rush
Creek IFIM.
Q Okay. And in other words, what you're saying is
you did not participate in any of the scoping of the
studies you were considering here today?
A No, sir.
Q Did you review the scoping process on these
studies?
A In a general sense, by asking primarily personnel
from the LA DWP questions such as, who was involved,
who was on-site, and at that level, in terms of going
through my checklist of the kind of issues and concerns
that were raised and who was involved.
Q Now, in your understanding of who was involved
from LA DWP staff, I understand that's somewhat
secondhand information, but your understanding of that,
is there anybody else you would have added to that
scoping process?
A Well, I think again, I would -- in terms of
involved in the scoping
process?
Q That's correct, yes.
A Obviously the consultant that was doing the work,
the California Department of Fish and Game, if there
were issues of diversions or other things, you may
include the Army Corps of Engineers, if there were T
and E species or --
Q Specifically for these -- you know, and what --
some of these people that you've outlined here, or
agencies you've outlined were part of that scoping
process.
A Correct.
Q Was there anybody else you would have added to
that, that was not included in that process?
A I don't believe so.
Q And in the scoping process, would they have
addressed the argument we've seen here between the
different types of observations versus the use of Smith
and Acitunal (phonetic)?
A It is my understanding that there was not
unilateral agreement on the use and application of the
Smith and Acitunal (phonetic) curve.
Q Will was -- was there a resolve to that?
A Not to my knowledge, but I don't know
0254
specifically.
Q I'm assuming the resolve is Fish and Game
proceeding with Smith and Acitunal (phonetic)?
A Correct.
Q Do you know why -- or what the basis for the
argument was with Fish and Game at the time of why they
preferred Smith and Acitunal (phonetic) versus direct
observation, because, as you mentioned, was there time
constraints, monetary constraints of doing that, or do
you know?
A I believe that if I interpret the report
correctly, the best available information at the time
were the regional curves developed by Smith and

```
\(02530 ̂\)
```

 Acitunal (phonetic) for eastern Sierra trout streams.
 And that as part of the study design, they attempted to
 collect site-specific data. And because of data
 limitations, were only able to develop some life
 stages.
 Q And what was -- what was LA DWP's comments on the
 use of those? Were they suggesting the use of
 observations, Smith and Acitunal (phonetic), or did
 they have an opinion on it, or do you know?
 A I'm not sure. My only recollections of that are
 conversations with Dr. Randall Orton where he expressed
 concern over the Smith and Acitunal (phonetic) curves.
 0255
 Q In your review of the various IFIM reports, did
 you have occasion to contact the contractors that
 actually prepared those studies and did the work?
 A No, sir. My comments went specifically back to LA
 DWP.
 Q Did you contact, though -- did you discuss your
 review of that document, or did you ask questions of
 the contractors that actually prepared those documents?
 A No, sir.
 Q Is there any particular reason why you did not?
 A I was asked -- the information was provided to me
 in terms of the draft reports, and I was asked simply
 to perform independent evaluation of what went on and
 provide that directly back to LA DWP.
 Q If you were to have contacted them, and you got
 some clarification of the points that you've listed in
 your direct testimony, would you think that there is
 some reasons to change your conclusions?
 A Well, that would really depend upon what the
 consultants were able to articulate to me in terms of
 resolving the issues that I have raised.
 Q Let me kind of walk you through one -- one that
 I'm a little more familiar with, and see if can I do
 this. Middle Owens River IFIM. You went on quite
 considerably about hydraulic simulations.
 01 Did you use all of the 99 transects in which you
 Ô
there
03
04 that you have on page 68?
A I scanned in the Appendix B of the velocity
adjustment factors and correct -- made sure those data
were scanned correctly, and then went through an
exercise of plotting up every velocity adjustment
factor.
Q So your answer to that is that you used all 99?
A Yes, sir.
Q Are you aware that Jones and Stokes did not use
all of the 99?
A I believe that there was a subset that were
excluded.
Q And why were they excluded?
A Because they felt for those few cross-sections in
particular, I believe that the hydraulics were not

```
\begin{tabular}{|c|c|}
\hline & supported by adequate analy \\
\hline 19 & Q Would you agree with me if I told you that Jones \\
\hline 20 & and Stokes omitted 17 various transects because they \\
\hline 21 & did not match the hydrologic information? \\
\hline 22 & A I'm sorry, sir. I'm not sure I caught the \\
\hline 23 & question. \\
\hline 24 & Q Let me reword that again. Jones and Stokes \\
\hline 25 & developed their information on the 99 transects. And \(\begin{aligned} & \text { And } \\ & 0257\end{aligned}\) \\
\hline 0 & they found that between the normal year flows and the \\
\hline 02 & high flows, that there was a combination of use \\
\hline 03 & thereof, and at various points, that information that \\
\hline 04 & was derived from all of the transects did not fit very \\
\hline 05 & well. And subsequently they felt it was an aberration \\
\hline 06 & there and disregarded 17 transects. \\
\hline 07 & A Then that would simply reduce my percentages from \\
\hline 08 & 42 cross-sections at one flow and 40 at another by 17 \\
\hline 09 & cross-sections, instead of -- the 40 percent would \\
\hline 10 & still represent some percentage where I did not agree \\
\hline 11 & with the velocity adjustment factors. \\
\hline 12 & Q And, in fact, you haven't discussed the velocity \\
\hline 13 & adjustment factors at all with Jones and Stokes; is \\
\hline 1 & that correct? \\
\hline 15 & A No, sir. \\
\hline 16 & Q Isn't it true that extremely low or high flows \\
\hline 17 & beyond the flows that were -- where field data was \\
\hline 18 & collected are the most difficult to model? \\
\hline 19 & A Not necessarily. \\
\hline 20 & Q Would you expand on that a bit? \\
\hline 21 & A It is not uncommon in instream flow studies where \\
\hline 22 & stage discharge relationships, for instance, are \\
\hline 23 & nonlinear within the range of measured flows. And \\
\hline 24 & making the assumption that they are linear, produces \\
\hline 25 & spurious or erroneous results. \\
\hline & 0258 \\
\hline 01 & And also that the velocity adjustment factors can \\
\hline 02 & be influenced highly by the calibration procedures used \\
\hline 03 & in the velocities as you move between your measurement \\
\hline 04 & points. And there's no guarantee on how model \\
\hline 05 & performance will perform even within the range of \\
\hline 06 & measure discharges, let alone beyond the area of \\
\hline 07 & extrapolation. \\
\hline 08 & Q Would you agree with me that it appears that there \\
\hline 09 & is some additional information required to come to the \\
\hline 10 & conclusions that the hydrologic simulations are, as you \\
\hline 11 & put them, flawed, and that they are not of any use? \\
\hline 12 & A I'm not sure what additional information you would \\
\hline 13 & be referring to. One has to understand that the \\
\hline 14 & expected relationship between roughness in the channel \\
\hline 15 & and discharge decreases as a function of discharge. If \\
\hline 16 & I could draw a picture, I think it would help \\
\hline 17 & articulate \\
\hline 18 & Q That's fine. The point I'm getting at here is \\
\hline 19 & that it appears to me that without discussing some of \\
\hline 20 & the particulars involved in these studies that the \\
\hline 21 & consultants have actually developed, that it's \\
\hline 22 & difficult to draw the kind of conclusions you've got. \\
\hline 23 & I think there's some questions you have in there that \\
\hline 24 & could be answered by these people directly that may \\
\hline 25 & alter your conclusions. And I think the point I'm \\
\hline
\end{tabular}
```

 0 1 ~ t r y i n g ~ t o ~ m a k e ~ i s ~ w h e t h e r ~ o r ~ n o t ~ y o u r ~ a n a l y s i s ~ i s
 0 2 ~ c o m p l e t e ~ o r ~ n o t , ~ b y ~ n o t ~ h a v i n g ~ c o n t a c t e d ~ t h e s e
 people.ô
that from the standpoint
0 4 that if the report as presented indicates that the
0 5 range of velocity adjustment factors were within
0 6 ~ a c c e p t e d ~ r a n g e s ~ o f ~ m a g n i t u d e , ~ a n d ~ f o l l o w i n g ~ g e n e r a l l y ~
0 7 accepted relationships in terms of what they look like,
0 8 ~ a n d ~ i n ~ r e v i e w i n g ~ t h a t ~ i n f o r m a t i o n ~ t h o s e ~ v e l o c i t y ~
0 9 ~ a d j u s t m e n t ~ f a c t o r s ~ d o ~ n o t , ~ a n d ~ t h a t ~ w a s ~ t h e ~ b e s t
10 available simulation that they could produce, then I
11 would simply question what else can they tell me,
12 unless they have corrected those relationships prior to
13 utilizing them in the model.
14 ULINFARING OFFICFR DFL PIE
14
15
16
be honest.
Q Didn't catch many fish?
A Not many. If we did, it wasn't worth the effort.
Q Did you look at -- going on to the IFIM studies,
did you look at the studies that were conducted on the
Upper Owens?

```
```

A I did look at that study, yes, sir.
Q Did you draw any conclusions from that study?
A No, if my recollection serves me right, I thought
that in general the study on that particular site was
well done. And in terms of the ranges of flows that
were being discussed and other things, I felt that
there were no significant and pertinent issues to bring
before the Board that would extend the length of time
in my hearing here.
Q Did they use Smith and Acitunal (phonetic), or
direct observation?
A I believe they used a combination of Smith and
Acitunal (phonetic) and site-specific curves, if I
remember.
Q And on that subject, bear in mind that we're
evaluating all the evidence that's been brought forward
to us, and we have the controversy of both the E.A.
report and the Rush Creek report, using both types of
scenarios.
0262
What do you propose to do with that two different
types of information? Would you incorporate both or --
do you have some opinion on that?

```
```

Q Yes.
A Again, I would draw the Board's attention to
Dr. Hanson's Exhibit figure number Two that's on the
board, and draw some comfort level that at discharges
above, oh, I'll just say 40 cubic feet per second, that
the relative change in magnitude of weighted usable
area, as you incrementally increase the discharge above
that, really doesn't matter which curve you pick. It's
simply a scaling of those curves and differences
between discharge. They don't buy you any more of the
farm in terms of weighted usable area predictions.
Clearly at discharges on the order of 25 cfs, the
relative difference or magnitude of changes in weighted
usable area are basically the same for either analysis
that you would do. And the only point that really
requires some gray matter controversy or discussion
really exists between those two ranges of discharge,
where the relative peaking of the curve with
Mr. Hanson's analysis through E.A. versus the
California Fish and Game previous preference curves are
really fundamentally different.
0263
So you can take the results from both and apply it
below the specified flow range of about 20 to 30 cfs,
and you could apply either result at flow ranges above
40. And if you wanted to average the two curves and go
to town on the intervening curve, you could.
Q You made one other comment that was kind of
puzzling to me. You indicated that you could use an
IFIM to somewhat reconstruct historic stream
conditions.
Could you explain that to me a little bit?
A Well, in a lot of instream flow projects, we're

```
evaluating potential changes in stream geometry through habitat improvement. We will often go in and alter the actual cross-section geometry to what we would consider post-project conditions, or in a more simple case, taking the existing cross-sections and deepen them a bit, and add cover. For instance, if you were going to run a cover dependent analysis and rerun those models to get an idea of what those kind of changes may actually produce.
Q I think I have one other request or -- could you provide us a copy of your -- the reference that you referred to, your lecture notes -- I'm not sure how you referred to that. I think Mr. Roos-Collins was discussing Fish and Wildlife Service policy with you,
    and you were referring to the information in that
    document. Could you provide the Board a copy of that?
    A Yes. I have a copy that's called, "Using The
    Computer Based Physical Habitat Simulation System
    PHABSIM." The most recent edited version is August 15,
    1993, that I would be happy to provide to the Board.
            I think if I may also volunteer, we have also
produced a lab tutorial that explains some of how the
models work, and how to interpret them, that may be of
benefit to the Board. If you would like, we could also
provide this information. It helps a lot in
interpreting what makes a difference and what doesn't.
Q I'm sure every bit will help in unraveling this
puzzle. Thank you.
    I do have a couple of questions now for Mr.
    Morhardt. And thank you, Dr. Hardy.
        DR. HARDY: Certainly.
        MR. BIRMINGHAM: For record, these are my copies,
    and Dr. --
        HEARING OFFICER DEL PIERO: We appreciate him
    offering them to us.
        MR. BIRMINGHAM: He will give you additional
    copies.
        DR. HARDY: Would it be permissible to send those
        on diskette to legal counsel, and let him print the 400
                            0265
    pages of double-spaced information?
    HEARING OFFICER DEL PIERO: I'm sure he's more
    than willing to do that.
    MR. BIRMINGHAM: I'd be more than happy to do
    HEARING OFFICER DEL PIERO: Just so long as I
    don't start hearing about rate payers any more.
        MR. HERRERA: I'm trying to move it along here in
    the interest of the rate payers, too.
    Q BY MR. HERRERA: Quickly, Mr. Morhardt, I'm a little
    bit curious in your plotting of flow relationships
    versus fish populations that you used in Figure 1
    annual flows. And we heard testimony that these
    streams are dynamic with all kinds of fluctuations that
    a single large event could alter the annual flows
    significantly.
        Would that change any of your analysis in -- if
    you had daily flows that you plugged into that versus
    average annual?

A BY DR. MORHARDT: I doubt it. The nine figures that follow Figure 1 use three different flows. They use the mean annual flow, the mean monthly low flow, and the mean monthly high flow. And the data are essentially the same. There's just no correlation. I've also looked at some length to try to find other 0266
```

things that might be correlated in terms of flow
events, and I haven't found any yet.

```
    The only thing that \(I\) think might happen is that
if you had large short-term flood flows, it might have
a strong short-term reduction in fish populations,
because it's clearly damaging to brown trout fry to
have large flows during emergence.
    MR. HERRERA: I think that concludes my questions,
gentlemen. We've probably got more here, but I'll
concede to my colleague, Mr . Canaday.
    HEARING OFFICER DEL PIERO: Mr. Canaday, before
you begin, would you like to take a break on this?
    I'd like to point out that we've been joined by my
good friend and an excellent gentleman, the Director of
the California Department of Fish and Game,
Mr. Boyd Kibbons (phonetic) in the back of the room.
It's good to see you, Boyd.
    Do you want to go now, Mr. Canaday?
    MR. CANADAY: That's fine. A break would be fine.
    HEARING OFFICER DEL PIERO: We'll take a break for
ten minutes.
    (Whereupon a recess was taken at this time.)
    HEARING OFFICER DEL PIERO: Ladies and Gentlemen,
we're going to begin again. Mr. Frink, you have a
quick announcement?
    MR. FRINK: Yes, just in order to meet any notice
    requirements, we're going to hand out, as well as mail
    out, a copy of a notice for another field orientation
    tour for at least one of the Board members. I'll just
    read it real quickly, because we're near the time of
    the tour.
    It's on November 22nd at 1:30, continuing on
    November \(23 r d\), meeting at the visitors' center, the
    forest scenic area visitors' center in lee
    Vining. A number of you have been on these before, or
    at least received the notices. It's one short
    paragraph.
            "A field orientation tour has been scheduled to
        familiarize the State Water Resources Control Board and
        Board members with Mono Lake and the Mono Basin
        watershed and the diversions and uses of water in the
        Mono Lake, Mono Basin and the Upper Owens River. The
        Tour is for orientation purposes only."
            I want to emphasize this part, since we're really
    in the midst of the hearing now.
            "All parties may be present during the tour, but
        may not present testimony, evidence or arguments
        related to the issues to be considered at the hearing.
        If you wish to be present or accompany the Board on the
        tour, you must arrange for your own transportation.
```

on the 22nd, we're nearly there, we wanted to bring it
up today.
HEARING OFFICER DEL PIERO: This is a down park --
an optional event? Ô

```
have
20
21
```

been on two or maybe three of these by now. And, you
know, we're noticing it not because we expect anybody
to be there, but just because we're obligated to notice
it.
HEARING OFFICER DEL PIERO: It's my sense that Dr.
Stein is not going to be running around in shorts on
that one. That's not necessarily true.
Okay. Mr. Canaday, you're on.
MR. CANADAY: Thank you. Actually, before I start
with Dr. Morhardt or Dr. Hardy, and since I've now been
given a handle that will follow me through the rest of
my life, I was curious if that when he looked at me, he
was -- looked at and considered weighted usable area
when he arrived at --
MR. HERRERA: It was suggested that it be changed
to Captain Habitat.
MR. CANADAY: And I would like to insure my
colleague that it would take water of greater depths to
fully wet my perimeter.

```
                                    0269
HEARING OFFICER DEL PIERO: I figured it out.
After 5:00 o'clock you get to be funny, right?
Q BY MR. CANADAY: Dr. Hardy, one of the premises of
    IFIM is that the channel remains stable; is that
    correct?
    A BY DR. HARDY: Yes, sir the hydraulics assume a rigid
    bed.
    Q And in what years were these, just for my
    recollection, what years were these studies done that
    are being presented to the Board today for Rush Creek?
    A When were the cross-sections collected?
    Q Um-hum.
    A I'd have to go back and look. I believe it was in
    1987.
    Q That would be for both of the studies?
    A My independent recollection is that would be
    true. Although Lee Vining Creek may have been later.
    I don't recall specifically --
    Q I'm more concerned about Rush Creek. I believe it
    was at least 1987 for the E.A. report. I'm not sure
    about Fish and Game.
            Since those cross-channel sections have been
    collected, certainly after 1989, there's been
    significant additional flow in those channels.
            Would you agree that the stream geometry has
                            0270
    changed since 1989, or since those studies?
    A It is my impression from observing Rush Creek and
        hearing other testimony that that would indeed be the
        case.
        Q Would that affect the applicability of the
        recommendations from either one of those studies if the
        stream is significantly different today than it was
        when those studies were put on?
```

A It definitely has that potential, sir.
Q Earlier in your testimony, you spoke of something
that's near and dear to me, and that's biological
sense, and that we don't get caught up in these
mathematical representations of what a stream is, but
we look at more of what a stream could be.
Is it your sense that if for reasons other than
weighted usable area that instream flows had to be
higher than the recommendations -- the lowest
recommendation that's before the Board now, that flows
were necessary in those channels for other reasons than
for biological sense, that this would cause an impact
on the fisheries?
A I believe there would be a potential for that as
broadly asked, yes.
Q What would those, in a broad perspective then,
what would those impacts be?

```

0271
A Well, for instance, one can -- as Dr. Morhardt expressed in his example, very, very high flows at the wrong period of time, for instance, can eliminate successful spawning by way of taking out young of the year, or fry, out of the system, because the timing or magnitude of the flows would be too high at a specific

One can also experience problems on the other side, for instance, with too low a flow during the winter period. You know, one of a number of infinite reasons where that would be possible.
Q Do you have a professional opinion of what the magnitude would be of too much flow at any particular time? Let's say for spawning or emergence?
A Not at this point, sir.
Q Dr. Morhardt, I believe on your testimony, in fact, the very first sentence on the top of page 73, again, that you -- you have said -- and I'm quoting, in quotes, The principal question in deciding on new instream flow regimes is whether or not fish populations will benefit from the increased flows.

Again, I would ask you the question: If the Board, for reasons of biological sense, chose or required instream flows greater than what you've identified, that it's certainly not that they didn't

0272
benefit, but they would be detrimental to the stream or the fisheries for lake levels higher than what the 19 cfs or 20 cfs were resulting.
A What was the question? I just didn't get the question.
Q If -- if, because of a decision that the Board would make choosing a lake level alternative, and to achieve that lake level alternative, it required flows greater than the 20 or 30 cfs that you indicate -- that the E.A. studies indicate that we can't predict whether -- what the actual benefits would be to the fishery, but is it your opinion that it wouldn't be detrimental to the fishery?
A I think it would have to get fairly high to be detrimental.
Q And that if these flows were necessary, again, for
\begin{tabular}{|c|c|}
\hline 17 & biological reasons other than just the maintenance of \\
\hline 18 & fishery, such as riparian recovery, either in extent or \\
\hline 19 & in diversity, or for allowing natural channel \\
\hline 20 & configuration changes to occur, rather than what some \\
\hline 21 & people have claimed as intrusive or heavy-handed for \\
\hline 22 & engineering solutions, that that would not be \\
\hline 23 & detrimental to the fishery? \\
\hline 24 & A It's kind of a broad question, but I think in \\
\hline 25 & general, Rush Creek and the fishery in Rush Creek can 0273 \\
\hline 01 & withstand flows considerably higher than the 19 cfs \\
\hline 02 & that were in it when I made these measurements. \\
\hline 03 & MR. CANADAY: That's all I have. Thank you. \\
\hline 04 & HEARING OFFICER DEL PIERO: Thank you very much. \\
\hline 05 & Mr. Birmingham? \\
\hline 06 & MR. BIRMINGHAM: Mr. Dodge and I have an agreement \\
\hline 07 & that if I keep it brief, he'll keep it at three \\
\hline 08 & minutes, so I'm going try to keep it as brief as \\
\hline 09 & possible. \\
\hline 10 & HEARING OFFICER DEL PIERO: You actually agreed to \\
\hline 11 & that? I'm not asking him. I'm asking you. I don't \\
\hline 12 & expect him to keep his promise on that. \\
\hline 13 & MR. BIRMINGHAM: Actually, you've known him long \\
\hline 14 & enough. \\
\hline 15 & REDIRECT EXAMINATION BY MR. BIRMINGHAM \\
\hline 16 & Q BY MR. BIRMINGHAM: Dr. Morhardt, I'm going to ask \\
\hline 17 & you the easiest question you've ever been asked. \\
\hline 18 & Where were you born? \\
\hline 19 & A BY DR. MORHARDT: In Bishop. \\
\hline 20 & Q And how long did you reside in the eastern Sierra? \\
\hline 21 & A I lived there through high school, and then I came \\
\hline 22 & back summers for a while after that. \\
\hline 23 & Q Is your familiarity with some of the streams that \\
\hline 24 & you have testified about this afternoon based upon your \\
\hline 25 & having been a resident of the eastern Sierra? \\
\hline & Put 0274 \\
\hline 01 & A Well, in part. But of course I also worked for \\
\hline 02 & the Department of Fish and Game for a while doing just \\
\hline 03 & that, surveying streams. \\
\hline 04 & Q Dr. Hardy, I might have some questions for you. \\
\hline 05 & Mr. Herrera asked you a question about the velocity \\
\hline 06 & adjustment factors that were used in the Middle Owens \\
\hline 07 & IFIM; is that correct?ô \\
\hline \1ù, & , ÚÚ̇̇, . \\
\hline sir. & \\
\hline 09 & Q Would you explain for us what velocity adjustment \\
\hline 10 & factors are? \\
\hline 11 & A I finally get to draw my graph. \\
\hline 12 & Q If -- if it would help you in your explanation of \\
\hline 13 & velocity adjustment factors and with the permission of \\
\hline 14 & the hearing officer -- \\
\hline 15 & DR. HARDY: It would only take a few minutes, and \\
\hline 16 & I think it's a critical point, to clean up the issue \\
\hline 17 & that was raised and the question that was asked me. \\
\hline 18 & If I can have your permission, Mr. Del Piero? \\
\hline 19 & HEARING OFFICER DEL PIERO: Go ahead. \\
\hline 20 & DR. HARDY: I think there's also something about \\
\hline 21 & being a university professor, you can't talk without \\
\hline 22 & standing up and drawing on something. Again, just in \\
\hline 23 & 25 words or less, if you -- \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 25 & HEARING OFFICER DEL PIERO: I'm counting. DR. HARDY: Can you read sign? \\
\hline & -0275 \\
\hline 01 & If you'll look at roughness, and I'll just put \\
\hline 02 & down N to indicate roughness in a stream versus \\
\hline 03 & discharge, basically in an open channel you'd expect a \\
\hline 04 & relationship from a lot of empirical observations that \\
\hline 05 & that should do the following: \\
\hline 06 & If I have measured out a cross section and \\
\hline 07 & calibration discharge, and let's call it 100 cubic feet \\
\hline 08 & per second \\
\hline 09 & Q BY MR. BIRMINGHAM: And you've identified as Q-2? \\
\hline 10 & A Q sub C for calibration. We in essence will get \\
\hline 11 & back in the hydraulic models a calibration roughness \\
\hline 12 & indicated as N sub C on this figu \\
\hline 13 & Q Which you've marked on the vertical axis of the \\
\hline 14 & graph you're drawing? \\
\hline 15 & A Yes, sir. I will be more explicit for the \\
\hline 16 & record. What happens in these models in PHABSIM or \\
\hline 17 & other hydraulic models is if I were to simulate a flow \\
\hline 18 & less than the calibration flow, and in this instance \\
\hline 19 & 100 cfs , and I will designate it as Q-50, indicating 50 \\
\hline 20 & fs, then if one were to come up and intersect the \\
\hline 21 & elationship between roughness and discharge, one \\
\hline 22 & should get a value of roughness indicated as N sub 50, \\
\hline 23 & which, in fact, is greater than the roughness that you \\
\hline 24 & got from the model based on your initial calibration \\
\hline 25 & data of N sub C , and that's indicated by N sub 50 being \\
\hline 01 & higher on this graph. \\
\hline 02 & Therefore, in the model, when it takes this \\
\hline 03 & calibration roughness, and you tell it, I want you to \\
\hline 04 & simulate a discharge of 50 cfs , it takes the roughness \\
\hline 05 & from the calibration data, at the calibration flow, and \\
\hline 06 & predicts the velocities in the stream. But because \\
\hline 07 & this N value is too low in reality, the computation of \\
\hline 08 & the discharge at a cross section, in fact, is too \\
\hline 09 & large, because the roughness is really in the model too \\
\hline 10 & lo \\
\hline 11 & Therefore, the velocity adjustment factor, which \\
\hline 12 & is this ratio between the simulated discharge and the \\
\hline 13 & computational trial in the model, will be a value in \\
\hline 14 & the computational velocities that gives you a discharge \\
\hline 15 & greater than 50. And therefore, at flows below your \\
\hline 16 & calibration flow, and I've indicated on the second \\
\hline 1 & figure velocity adjustment factor as a function of \\
\hline 18 & discharge, that at flows less than the calibration \\
\hline 19 & discharge, a VAF of one being unity at a Q of 50, which \\
\hline 20 & is lower than the calibration discharge of 100, you \\
\hline 21 & would expect the VAF to be less than one. \\
\hline 22 & Conversely, at discharges higher than the \\
\hline 23 & calibration flow, the corresponding roughness in the \\
\hline 24 & channel is, in fact, too high. Therefore this ratio is \\
\hline 25 & to be greater tha \\
\hline
\end{tabular}
_0277

\section*{hydraulic theory.}

If the VAF's generally do not follow this relationship, it is indicative of either an error in the water surface elevation modeling, because the hydraulic radius of the stream is wrong and therefore
```

You can't imagine how
10 grateful I am that you waited until after Mr. Stubchaer
11 left to give us that presentation.
MR. DODGE: Which slightly exceeded 25 words.
DR. HARDY: I was being articulate for the benefit
of legal counsel.
HEARING OFFICER DEL PIERO: Everybody's funny
after 5:00 o'clock.
Q BY MR. BIRMINGHAM: Dr. Hardy, I believe that you
testified that in connection with the middle Owens
IFIM, you had questions about 40 percent of the VAF
calculations that were prepared in connection with that
IFIM; is that correct?
A BY DR. HARDY: Yes, sir.
Q Could you please explain how or what caused you to
question the 40 percent of those velocity adjustment
factor calculations?

```

A For many of the velocity adjustment factors that I reviewed in the report -- I am drawing a graph of VAF versus discharge. On many of the cross-sections, the velocity adjustment factors would have relationships that look like that. There were others which goes up, goes down, and goes back up --
Q For purposes of the record, can you please identify the graph that you are now working on as Number 3?
A Yes. I have indicated the initial graph of roughness versus discharge as Number 1. VAF versus discharge theoretical relationship as Number 2, and examples of VAF versus discharge for the study under discussion as Number 3.

Other VAF relationships in that study, in fact, went the opposite direction as what would be expected from hydraulic theory.
Q Explain to me in as simple terms as you can why that would cause you to be suspect of the calculations? A Well, when I teach this course, the first thing we attempt to do in teaching our students is that one of the critical things you examine in your hydraulic simulations to evaluate the adequacies of those, is to examine these relationships. And if they don't follow, generally, this theoretical relationship as indicated
in number -- Figure Number 2 on the easel, and they
look like these relationships as indicated in Number 3, you have some potential problem with your water surface elevations and/or your velocity calibrations and simulations in the model.

MR. BIRMINGHAM: Mr. Del Piero, may we have the piece of butcher paper that Dr. Hardy has been writing on marked next in order for LA DWP. And I believe that it would be LA DWP Number 78.

HEARING OFFICER DEL PIERO: Objection? No objections. So ordered.
(LA DWP Exhibit Number 78
    MR. SMITH: Mr. Birmingham, actually, I think it's
    77.
        MR. BIRMINGHAM: We have marked one other --
    MR. SMITH: One other?
    MR. BIRMINGHAM: Yes.
    MR. SMITH: Okay.
    HEARING OFFICE DEL PIERO: Does that conclude your
    questions?
    MR. BIRMINGHAM: No, it does not.
    HEARING OFFICER DEL PIERO: It does not. Okay.
Q BY MR. BIRMINGHAM: With that explanation in mind,
the explanation you've given us in connection with your
preparation of LA DWP 78, is there anything that anyone
could tell you about how the velocity adjustment
factors were calculated that would satisfy the concerns
that you've expressed about those calculations?
A I don't think so. If the velocity adjustment
factors in that report that I've articulated look like
examples as indicated on LA DWP, Exhibit 78, in Figure
Number 3, it's simply indicative of either errors in
the water surface and/or the velocities. And if they
orrected or analyzed, or if there is nothing
    you can do, then relying upon those will produce
    erroneous results when you go forward, in particular,
    with the habitat model.
    Q Now, I'll address this question to either of you,
    or both of you. You were asked, both of you, questions
    about the pre-diversion fishery that existed in Rush
    Creek and in Lee Vining Creek.
            I don't know if both of you were present, but \(I\)
    will ask both of you to assume that there has been
    evidence that -- it has been suggested that in Rush
    Creek, below -- Rush Creek prior to diversions, there
    were . 75 adult fish per linear foot in Rush Creek.
            Dr. Hardy, do you have an opinion as to whether or
        not that is a reasonable estimate of the number of
        adult brown trout that existed in Lee Vining or --
                            0281
    excuse me, in Rush Creek prior to DWP's diversions?
    A BY DR. HARDY: My opinion on that is I find it just
    impossible to believe.
    Q Would you explain the basis of that opinion?
    A I'm an avid fisherman and have made my life doing
    instream flow studies and stomping around most of the
    intermountain west and great basin areas of California,
    Arizona, Nevada, Utah.
            And I'm just not aware of streams like Rush Creek
        or Lee Vining Creek that just sustain that number of
        fish per linear foot of stream. I just find it
        incomprehensible.
        Q Dr. Morhardt do you have an opinion on that
        question?
        A BY DR. MORHARDT: I think it's extremely unlikely.
        The highest number of fish per mile in the eastern
        Sierra by far is in the section of the Owens gorge,
        just downstream from Lake Crowley. And that's about
        4500 fish per mile, which maybe is in the range of .75
```

per linear foot.
But that's so far removed from any other stream,
including all the other streams, that -- except for Hot
Creek, which I think is a very special case, which is
somewhat less, that the -- I just think it's basically
impossible.
Q Dr. Morhardt, how do eastern Sierra streams or --
let me restate the question. Are eastern Sierra
streams comparatively productive or unproductive
compared to streams in other parts of the western
United States?
A I'll have to have Dr. Hardy answer that, because
I'm only familiar with streams in the eastern Sierra.
Q Dr. Hardy, do you have an opinion on that
question?
A BY DR. HARDY: Yeah. My basic impression from my
knowledge of the fisheries information is that the
eastern Sierra streams to me are most typical to the
south slope streams in Utah, which are typically lower
productive streams than any other streams in the
intermountain west that I've dealt with.
Q Have you dealt with streams in Montana?
A On occasion.
Q Dr. -- excuse me. Mr. Dodge asked, I believe,
Dr. Morhardt a question about a method used to
calculate minimum flows for streams. He referred to it
as the Tenant Method, and also asked whether it's known
as the Montana Method.
Do you recall those questions either of you?
A BY DR. MORHARDT: I do, sure.
A BY DR. HARDY: Yes.

```
    01 Q I'll direct this question again to both of you.
    02 Do you have an opinion concerning the applicability of
    03 the Montana Method or the Tenant Method to eastern
    04 Sierra streams?
    05 A BY DR. HARDY: Well, I'll take a shot at that first.
    06 My one issue, I guess, with the application of the
    07 Tenant or Montana Method to eastern Sierra streams is
    08 that the type of stream systems from which that
    09 relationship was developed are very different than the
    10 type of stream that exists in the eastern
Sierras.ô
anyway, I have not seen any
    12 attempt to validate that methodology as being
    13 applicable or appropriate to eastern Sierra streams.
    14 Q Dr. Morhardt, Mr. Dodge asked you a question which
    15 elicited a response that you had actually used the
    16 Montana or Tenant Method to calculate or estimate
    17 minimum flows for Parker and Walker Creeks in the Mono
    18 Basin; is that correct?
    19 A BY DR. MORHARDT: That's correct.
    20 Q Would you please explain why you used the Tenant
    21 or Montana Method to calculate those minimum flows?
    22 A Because we had no information at all that we could
    23 use other than just what the flow regime had been.
        That method, I think most people would agree, one would
        only use in the absence of data. It's regarded as an
```

office sort of a method.
Q Again in response to a question by Mr. Dodge,
Dr. Morhardt, you started to talk about an analysis
that you had done comparing the population of what you
termed bigger fish, fish in excess of, I believe you
said 12 inches, in Rush Creek to other creeks.
Do you recall that statement you began to make?
A Yes, I do.
Q And Mr. Dodge stopped you. What was the result
when you looked at how fish 12 inches or bigger in Rush
Creek compared to other streams?
A Well, there seems to be a threshold -- the reason
we didn't include them in the analysis in the first
place is that two-thirds of the streams in the eastern
Sierra don't have any fish that size. So it's a small
population of streams you're left with.
Of streams in the 10 to 20 cfs range, in which
Rush Creek lies at present, Rush Creek has as many or
more than any other stream. The only streams that have
more fish that are 12 inches long are Mammoth Creek,
just adjacent to the Hot Creek fish hatchery. And
Deinstadt stated in his reports here that he thought
many of those fish might have escaped from the fish
hatchery.
Hot Creek has them as well. And the Bishop Creek

```
                                    0285
canal, which I think had flows of about 19 cfs , that
was the mean monthly flow for the month when Deinstadt
sampled it, had quite a few more, also.
Q There were questions about, I believe from
doctor -- excuse me, Mr. Herrera, that were answered by
Dr. Hardy, about the use of Smith and Acitunal
    (phonetic) curves. And in fact, they were used in the
Department of Fish and Game IFIM.
            Notwithstanding the controversy over their use as
opposed to habitat specific -- or site-specific
curves. The name Smith and Acitunal (phonetic), where
does that come from, Dr. Hardy?
A BY DR. HARDY: I believe it is the authors of the
Habitat Suitability Curves in the Eastern Sierra Trout
Streams.
Q Do you know the Smith in that Smith and Acitunal
    (phonetic)? Who is that Smith?
A My distinguished colleague, Gary Smith, who is
here at the back of the room.
\(Q \quad\) You say your distinguished colleague? For whom
does Gary Smith work?
A California Department of Fish and Game.
Q And did Mr. Smith have any connection with the
IFIM's that were being prepared in connection with the
Rush Creek study for Department of Fish and Game?
\(\qquad\)
MR. DODGE: Objection. This goes well beyond any cross-examination.

HEARING OFFICER DEL PIERO: It does. I know you're allowed to examine beyond what has taken place in terms of direct or cross-examination.

The question I have, beyond attempting to comment on the credibility of the witnesses that may be called by the Department of Fish and Game, is what the
```

 relevance of the question is?
 MR. BIRMINGHAM: I'm not trying to comment on
 Mr. Smith's credibility, Mr. Del
Piero.ô
HEARING OFFICER DEL PIERO: Are we establishing
authorship of the study?
MR. BIRMINGHAM: Actually, this relates to -- not
credibility --
MR. DODGE: In the interest of time, I'd like to
withdraw the objection.
HEARING OFFICER DEL PIERO: Okay. What was the
last question?
(Whereupon the record was read as requested.)
MR. BIRMINGHAM: That was a terrible question.
Let me just ask it again.
HEARING OFFICER DEL PIERO: You want to withdraw
the question, or rephrase it?
MR. BIRMINGHAM: I will withdraw the question.
0287
Q BY MR. BIRMINGHAM: Isn't it correct that Mr. Smith
was, in fact, the Department of Fish and Game
administrator responsible for the preparation of the
Rush Creek IFIM for the Department of Fish and Game?
A BY DR. HARDY: I believe his name is stated as such
on the report.
Q Dr. Morhardt, Mr. Dodge at the conclusion of his
cross-examination of you asked a question about
population data on Rush Creek at higher flows, higher
than 19 cfs. And I believe you responded that you had
no fish population data from Rush Creek at flows higher
than }19\mathrm{ cfs.
Was that your testimony?
A BY DR. MORHARDT: Yes, it was.
Q Was that correct?
A Well, I was referring to data that we had
collected at E.A. I subsequently recall that the
testimony of Dr. Carl Meesic, which will be upcoming,
does, in fact, include population estimates through
1993, so there are data at higher flows.
Q What do those data show in terms of fish
population changes with higher flows that were
instituted in 1989?
A It appears to me that the populations are varying
in the same way they did prior to that, and they're
0288
about of the same magnitude.
HEARING OFFICER DEL PIERO: Excuse me. Just for
my own clarifications. Is that data, or are those
estimates?
DR. MORHARDT: These are population estimates that
are derived from -- they're derived the same way the
earlier ones were, from electrofishing data.
HEARING OFFICER DEL PIERO: Okay. But they are
estimates, not hard numbers at this point in terms of
1993 population?
DR. MORHARDT: I believe they are hard numbers.
They're called estimates, because the data that are
collected from a small section of stream are then --
HEARING OFFICER DEL PIERO: Extrapolated?
DR. MORHARDT: Yeah, extrapolated from the rest of

```
```

 the stream. But that's been the case all along.
 HEARING OFFICER DEL PIERO: Okay.
 I need to point out to you, Mr. Birmingham,
 that --
 MR. BIRMINGHAM: That if I'm going to hold
 Mr. Dodge to his representation, I probably better sit
down.
HEARING OFFICER DEL PIERO: I think so.
MR. BIRMINGHAM: I have just one further question
that I'd like to ask Dr. Hardy. And this relates to a
0289
question that was asked by Mr. Dodge.
Q BY MR. BIRMINGHAM: Mr. Dodge -- and I want to make
sure I understand it, because you testified in response
to a hypothetical question, Dr. Hardy, by Mr. Dodge
about how the 80 percent of maximum habitat in the
stream as it exists today would relate to a stream as
it existed pre-diversion.
And Mr. Dodge made a whole series of
representations to you about how pre-diversion the
stream was narrower and had been widened by the
destruction of riparian vegetation.
Do you remember the series of assumptions that
A BY DR. HARDY: Yes, sir.
Q Would you explain your answer to him that -- what
was your answer to him?
A My answer, basically, was that the conditions that
exist now, that cross-section data was dependent upon,
and I will use the example of 20 cubic feet per second,
existing in a channel that is broad and denuded of
vegetation and very shallow at a specific location.
If you were to take that same 20 cubic feet per
second and put it into a channel that would be
indicative of conditions prior to that, this would be
the assumption of what it looked like pre-1941, the

```
    habitat values you would get for that same unit amount
    of discharge would be higher.
            And the idea there is that if you take 80 percent
    of the habitat value based on a crummy looking stream
    and set it, and then you take that same flow amount and
    put it down a stream that has now good structural
    diversity and integrity, you wind up with more habitat
    per unit discharge.
    MR. BIRMINGHAM: Thank you. I have no further
    questions.
    HEARING OFFICER DEL PIERO: Thank you very much.
Mr. -- I'm sorry. Miss Cahill.
    MS. CAHILL: This will be brief.
                RECROSS-EXAMINATION BY MS. CAHILL
Q Dr. Hardy, I recall you discussing with
Mr. Roos-Collins Table \(3 A-3\) from the EIR. I assume you
remember it.
A BY DR. HARDY: Yes, ma'am.
Q If you were to develop on-site criteria curves,
would you take all your data at a flow that was lower
than the zero percentile flow for that stream?
A No. If I were to go out and attempt to develop
site-specific curves, I would want to collect
```

observations from a wider range of flows as I could
physically collect the data in the stream.
Q So would you then have a criticism of the E.A.
study based on the fact that they took all of their
observations at 19 cfs?
A From that viewpoint, it would be a criticism.
Q Thank you.
Dr. Morhardt, we've now seen the Deinstadt studies
that were provided to us by California Trout. And I
believe you've testified that you used information from
these studies in your analysis; is that correct?
A BY DR. MORHARDT: That's correct.
Q And did you incorporate the biological and
physical characteristics of the streams in your
analysis?
A Yes, I did.
Q And which ones.
A Most of them. We made some synthetic variables
using a variety of them. We tried to -- I think
basically almost all of them.
Q And did you use food abundance as a factor that
was included in your analysis for these streams?
A No, I think not. We didn't have food abundance
from a very large percentage of the streams, so we
weren't able to produce that.
Q Can food abundance effect the size of the trout
population?
A Oh, yes.
Q So would you agree that you were not able to
consider a major factor other than flow that can effect
the size of trout populations in the eastern Sierra
streams?
A That's correct.
MS. CAHILL: Thank you. That's all I have.
HEARING OFFICER DEL PIERO: Thank you very much.
Mr. Dodge? I won't hold you to the three minutes,
Mr. Dodge.
MR. BIRMINGHAM: Nor will I.
MR. DODGE: Unfortunately, I'm going ask Dr. Hardy
a question, so I don't think I can guarantee --
Ô
R. HARDY: The answer's yes.
MR. DODGE: It's a why question, Dr. Hardy.
HEARING OFFICER DEL PIERO: Don't go too fast,
guys, I'm writing this down.
RECROSS-EXAMINATION BY MR. DODGE
Q In response to Miss Cahill's question that you
would want a broader range of flows than
19 cfs in order to get site-specific utilization
curves, you said, yes, you would. And if that was a
criticism of E.A.'s approach, why would you want a
broader range of flows?
A BY DR. HARDY: Well, basically the idea there is you

```
            0293
        01 would want to try to maximize conditions under which
        02 your observation data was taken. Primarily, the
        03 fundamental problem with suitability curves is that
        04 they are surrogate for what we know to be true fish
\begin{tabular}{|c|c|}
\hline & behavior on selection of stream locations. They really \\
\hline 06 & select energetically favorable positions. \\
\hline 07 & Q And, in fact, at 19 cfs E.A. was able to sample \\
\hline 08 & very little deep water habitat, correct? \\
\hline 09 & A That in one sense is true. The other thing to \\
\hline 10 & Q I said yes or no, sir. \\
\hline 11 & A Yes, if I can explain. \\
\hline 12 & HEARING OFFICER DEL PIERO: The answer is yes. \\
\hline 13 & MR. DODGE: Thank you. Just a couple more \\
\hline 14 & questions. A question for Dr. Morhardt. \\
\hline 15 & Q BY MR. DODGE: Mr. Birmingham asked you about . 75 \\
\hline 16 & fish per linear feet. And you related that to the \\
\hline 17 & Owens Gorge at 4500 fish per mile. \\
\hline 18 & Would you agree with me that 4500 fish per mile is \\
\hline 19 & more than . 75 fish per linear foot? \\
\hline 20 & A BY DR. MORHARDT: Would you care to tell me exactly \\
\hline 21 & what it is, if you know? \\
\hline 22 & Q I'm trying to elicit from you that 4500 divided by \\
\hline 23 & 5,280 is greater than three fourths. \\
\hline 24 & A That's probably correct. \\
\hline 25 & Q Now, the last line of questions, again, for you, \\
\hline 01 & Dr. Morhardt, and this relates to the questions that \\
\hline 02 & Mr. Roos-Collins was asking. And he pulled out \\
\hline 03 & Cal-Trout Exhibit 23 and Cal-Trout Exhibit 24. And he \\
\hline 04 & was trying to elicit from you as to whether the various \\
\hline 05 & streams described in that were comparable to Rush \\
\hline 06 & Creek. \\
\hline 07 & And you testified that they must be -- they must \\
\hline 08 & be the most comparable to Rush Creek, because you had \\
\hline 09 & all the streams along the eastern Sierra. \\
\hline 10 & Do you recall that testimony? \\
\hline 11 & A \\
\hline 12 & Q Now, in fact, that's not quite true, is it? \\
\hline 13 & Because there are a couple of streams along the eastern \\
\hline 14 & Sierra that are not included? \\
\hline 15 & A It's true. There are a couple that are not. \\
\hline 16 & Q And one of them is the Upper Owens River. \\
\hline 17 & A That's correct. \\
\hline 18 & Q And Mr. -- I've forgotten his name. Who is the \\
\hline 19 & representative of the -- Mr. Haselton and you \\
\hline 20 & established that the Upper Owens River was spring fed. \\
\hline 21 & Do you recall that? \\
\hline 22 & A I do. \\
\hline 23 & Q And it was low gradient; do you recall that? \\
\hline 24 & A Well, it's low gradient down at Arcularius Ranch, \\
\hline 25 & yes. \\
\hline & 0295 \\
\hline 01 & Q Now, would you agree with me that pre-diversion \\
\hline 02 & Rush Creek, below the narrows, was low gradient and \\
\hline 03 & spring fed? \\
\hline 04 & A I don't think it's as low gradient as the Owens \\
\hline 05 & River at that location, but I haven't checked it out on \\
\hline 06 & a topo sheet, and I believe that it had some spring \\
\hline 07 & flow into it, but I doubt that had anything like the \\
\hline 08 & magnitude that the Owens River has. \\
\hline 09 & Q But would you agree with me that the great bulk of \\
\hline 10 & to other streams in the eastern Sierra are much higher \\
\hline 11 & gradient than Rush Creek below the narrows? \\
\hline 2 & \\
\hline
\end{tabular}

13 Q And would you agree with me that compared to Rush 14 Creek below the narrows, they have little spring ô \1ù, ù, ÚÚ
16 A I don't really know the magnitude of the spring's
17 feeding. But I would agree that they probably have 18 very little in general.
19 Q So that would you agree that one could make an
20 argument that the most comparable section,
21 pre-diversion to Rush Creek below the narrows, is in
22 fact the Upper Owens River?
23 A It's not impossible. I might have been tempted to 24 use the data from it, had it not been collected at a
25 time the spawning run was there.
0296
01 MR. DODGE: Thank you, sir. I have no more
02 questions.

HEARING OFFICER DEL PIERO: Thank you very much, Mr. Dodge. Mr. Roos-Collins?

MR. ROOS-COLLINS: No further questions. Although I do have a request of Dr. Hardy. I request that you forward the compilation of lecture notes, and also the Orange Paper to me so that I can evaluate whether to introduce them as exhibits.

MR. BIRMINGHAM: I will provide Mr. Roos-Collins with a copy at the same time that \(I\) provide a copy of the lecture notes to the State Board. And I will also provide to Mr. Roos-Collins and the State Board, if it so desires, a copy of what we referred to as the Orange Paper.

HEARING OFFICER DEL PIERO: Is that acceptable, Mr. Roos-Collins?

MR. ROOS-COLLINS: I thank Mr. Birmingham.
HEARING OFFICER DEL PIERO: Can we get those by say Monday?

MR. BIRMINGHAM: By Monday. That's a question we'll have to ask Dr. Hardy.

HEARING OFFICER DEL PIERO: The reason I ask that is because that's when our next day is that we're scheduled for hearing.
```

MS. CAHILL: We would request a copy of those documents, also.
HEARING OFFICER DEL PIERO: If originals are made -- if there's a problem in terms of making that information available, although tomorrow is a state holiday, Friday is not. And given my wonderful working relationship with our reproduction staff, I can probably get copies made.
Although I don't want to make that request unless I absolutely have to. If you can get them for us by Friday, fine, if you can't, if we can get the originals by Friday --
MR. BIRMINGHAM: I think given the fact that it is
a federal holiday tomorrow, it would be impossible to get them by Friday, because the only way we could get them by Friday would be to have Dr. Hardy return to Utah and express mail them to us.
HEARING OFFICER DEL PIERO: How many pages are
they, Dr. Hardy? That's them?
DR. HARDY: These are them. Mine is the Orange

```
```

Paper. This is the most current version, which is
probably }240\mathrm{ pages.
HEARING OFFICER DEL PIERO: I don't want any work
product in this, but can we get those and give them to
our duplication folks?

```
    01 MR. BIRMINGHAM: There is work product in this --
    in this document.
    HEARING OFFICER DEL PIERO: And how long will it
    take you to go through and white it out if you --
    MR. BIRMINGHAM: I can have that to you by
    Friday.
    MR. FRINK: Mr. Del Piero, I don't believe our
    staff is in a big hurry to get it. I don't know about
    everybody else.
        HEARING OFFICER DEL PIERO: Mr. Frink, I don't
    know if our staff's in a big hurry or not, but the
    consideration is that I'm sure there are some other
    people who would like a chance to see it as
    expeditiously as possible particularly since we've got
    hearings starting on
Monday.Ô
I normally wouldn't go to this effort in terms of
    17 documentation, but since no one's seen this material
    18 before, it's appropriate to get it copied as quickly as
    19 possible.
            If for nothing else, we'll make eight copies for
        our own staff, and Mr. Birmingham can follow up with
        the regular ten copies to us later on.
            MR. BIRMINGHAM: While we're talking about
        exchanging documents, we have been after some documents
        for some time --
            0299
        HEARING OFFICER DEL PIERO: Let's focus on this
        one first so we can get that out of the way. I still
        have to ask Ms. Scoonover if she's got any recross.
            Can you get us a reworked version of that minus
    work product by Friday morning?
            MR. BIRMINGHAM: Yes.
            HEARING OFFICER DEL PIERO: Fine. Are you working
    on Friday, Mr. Canaday?
            MR. CANADAY: Always.
            MR. BIRMINGHAM: We would request a copy also.
            HEARING OFFICER DEL PIERO: Mr. Canaday, can you
        impose on our reproduction staff to at least make
        copies for each party. And then Mr. Birmingham, after
        we make at least one copy for each party, you can then
        follow up with the regular copies that we require for
        our record; is that okay?
            MR. BIRMINGHAM: That would be fine.
            DR. HARDY: Mr. Del Piero, I have a question. We
    still have not resolved the issue of the Orange Paper.
            HEARING OFFICER DEL PIERO: I understand. I
        haven't forgotten about it. Tell me how many pages the
        Orange Paper is.
            DR. HARDY: It's 200 and plus pages. I believe
        that there's a copy in the -- perhaps here in
        Sacramento with California Department of Fish and Game.
01 HEARING OFFICER DEL PIERO: Is that true?
```

 MR. LEE: I think I've got a copy. I believe it's
 250 pages. I have one at my office.
HEARING OFFICER DEL PIERO: Do you -- would it be
beyond --
MR. THOMAS: Dr. Hardy is one of the consultants
from the Department of Fish and Game.
HEARING OFFICER DEL PIERO: I understand that. Do
you have work product in there.
MR. LEE: No.
HEARING OFFICER DEL PIERO: It's a clean copy?
MR. LEE: As I recall.
DR. HARDY: I think it would be best if I, upon my
return tomorrow morning, Fed Ex a copy to
Mr. Birmingham of the document I am referring to.
HEARING OFFICER DEL PIERO: Can you arrange to
have copies of that made available to everyone by --
how many pages is it -- 200?
DR. HARDY: The two potentially could be all over
200 pages, Mr. Del Piero.
MR. LEE: A social studies report.
HEARING OFFICER DEL PIERO: Federal Express it,
Dr. Hardy, okay?
DR. HARDY: Yes, sir.
HEARING OFFICER DEL PIERO: Mr. Birmingham, if you
0301
can arrange to have copies of that document for
everyone on Monday.
MR. BIRMINGHAM: I will try to have copies to
everyone by Monday.
HEARING OFFICER DEL PIERO: Okay.
Mr. Roos-Collins is that acceptable, sir?
MR. ROOS-COLLINS: That's acceptable. And I thank
Mr. Birmingham. No questions.
HEARING OFFICER DEL PIERO: What haven't you got,
Mr. Birmingham?
MR. BIRMINGHAM: We've been trying for quite some
time to get some information from Mr. Trihey concerning
some habitat studies that were conducted by his staff.
HEARING OFFICER DEL PIERO: Yeah, but he hasn't
been called as a witness yet, has he?
MR. BIRMINGHAM: Not that I'm aware
Since he hasn't
introduced evidence not in the record yet, it's going
to be impossible for me to demand that ahead of time.
At the appropriate time, however, Mr. Birmingham,
I'll be happy to make the same arrangements as we're
making here today.
MR. BIRMINGHAM: Okay.
HEARING OFFICE DEL PIERO: Okay. Miss Scoonover,
do you have any questions on recross?
0302
HEARING OFFICER DEL PIERO: You have no
questions. Okay. Anyone else? Mr. Haselton's gone,
again. Okay.
Any further questions? Mr. Frink? Does staff
have anything?
MR. FRINK: I don't believe so. I did have one
other announcement, and this one's real short.

```
of.ô
```

HEARING OFFICER DEL PIERO: Let me just express my appreciation to Dr. Morhardt and Dr. Hardy.
Thank you very much gentlemen for your time and patience. We appreciate it.
Mr. Frink?
MR. FRINK: Yes, the other announcement is for planning purposes on getting various witnesses or consultants here.
The first witness scheduled for Monday morning is Mr. Calkins of the EPA. And I believe that's their only witness.
And following that, we'll proceed with the
Department of Water and Power presentation, I believe.
HEARING OFFICER DEL PIERO: Yes, sir.
MR. THOMAS: From the Department of Water and Power, does Mr. Collins then follow --
HEARING OFFICER DEL PIERO: Can we get a listing 0303
of who you plan on calling next, Mr. Birmingham, so everyone can be prepared?
MR. BIRMINGHAM: Yes.
HEARING OFFICER DEL PIERO: And maximize our opportunities in terms of getting things out of the way.
MR. BIRMINGHAM: Our next witness will be Dr. Joseph Gel (phonetic), and at the request of Mr. Canaday we will present Mr. Tilliman with Dr. Gel (phonetic) as a panel.
After, that we will present the testimony of -excuse me. Of -- the return of Dr. Beschta probably. Then we will have John Pincino (phonetic) and Dr. Joseph Vadoric (phonetic) who will testify on the subject of air quality.
HEARING OFFICER DEL PIERO: And we all know that Monday and Tuesday nights. We're going into nighttime sessions. I'd do it on Wednesday, but I have to get in an airplane and fly to San Bernardino for a Thursday morning hearing on Big Bear.
So Monday and Tuesday nights, plan on enjoying the evening with us, Ladies and Gentlemen.
Unless I hear something more -- Mr. Birmingham?
MR. BIRMINGHAM: Are we starting at 8:30 on
Monday?
HEARING OFFICER DEL PIERO: Monday morning -- wait a second. Do we have a notice problem in terms of starting at 8:30?
MR. FRINK: The only day that we noticed a time for was the first day of hearing.
HEARING OFFICER DEL PIERO: Fine. Ladies and Gentlemen, we're going to start at 8:30 on Monday morning, okay?
MR. LEE: Have we resolved that we're going to meet on December 1st or not?
HEARING OFFICER DEL PIERO: December 1st is a day that we're going meet, unless I hear something otherwise. I talked to Mr. Petit last night, and December 1st is a day we're going to meet.
MR. DODGE: Could we address that on Monday, Mr. Chairman? I want the check my schedule.

```
\begin{tabular}{|c|c|}
\hline 17 & MR. FRINK: Although we don't have a noticing \\
\hline Ô & \\
\hline m s & arting at 8:30 Monday morning, we would have \\
\hline 19 & a problem with Mr. Calkins of the EPA, who had \\
\hline 20 & expressly requested and had been given the time of \\
\hline 21 & 9:00 a.m. Monday morning. \\
\hline 22 & HEARING OFFICER DEL PIERO: Then it will be \\
\hline 23 & 9:00 o'clock, Ladies and Gentlemen. \\
\hline 24 & MR. BIRMINGHAM: Now, where are Mr. Dodge and I to \\
\hline 25 & meet you and Mr. Stubchaer tomorrow? \\
\hline & [0305 \\
\hline 01 & HEARING OFFICER DEL PIERO: Out by a flagpole and \\
\hline 02 & we're going to practice the pledge of allegiance. \\
\hline 03 & Ladies and Gentlemen, thank you very much for your \\
\hline 04 & kindness and consideration. We'll see you next week. \\
\hline 05 & (Whereupon the proceedings were adjourned \\
\hline 06 & at 5:57 p.m.) \\
\hline 07 & --000--- \\
\hline 08 & \\
\hline 09 & \\
\hline 10 & \\
\hline 11 & \\
\hline 12 & \\
\hline 13 & \\
\hline 14 & \\
\hline 15 & \\
\hline 16 & \\
\hline 17 & \\
\hline 18 & \\
\hline 19 & \\
\hline 20 & \\
\hline 21 & \\
\hline 22 & \\
\hline 23 & \\
\hline 24 & \\
\hline 25 & \\
\hline & 0306 \\
\hline 01 & REPORTER'S CERTIFICATE \\
\hline 01 & \\
\hline 02 & ---00--- \\
\hline 02 & \\
\hline 03 & STATE OF CALIFORNIA ) \\
\hline 03 & ) ss . \\
\hline 04 & COUNTY OF SACRAMENTO ) \\
\hline 04 & \\
\hline 05 & I, KELSEY DAVENPORT ANGLIN, certify that I was the \\
\hline 06 & official court reporter for the proceedings named \\
\hline 07 & herein; and that as such reporter, I reported, in \\
\hline 08 & verbatim shorthand writing, those proceedings, that I \\
\hline 09 & thereafter caused my shorthand writing to be reduced to \\
\hline 10 & typewriting, and the pages numbered 1 through 304 \\
\hline 11 & herein constitute a complete, true and correct record \\
\hline 12 & of the proceedings: \\
\hline 13 & \\
\hline 14 & PRESIDING OFFICER: Marc Del Piero \\
\hline 15 & JURISDICTION: State Water Resources Control Board \\
\hline 16 & CAUSE: Mono Lake \\
\hline 17 & DATE OF PROCEEDINGS: November 10, 1993 \\
\hline 18 & \\
\hline 19 & IN WITNESS WHEREOF, I have subscribed this \\
\hline
\end{tabular}
```

certificate at Sacramento, California, on this 18th day
of November, 1993.
Kelsey Davenport Anglin, RPR
CM, CSR No. }855

```
```

